Patents Assigned to GSI
  • Patent number: 7048904
    Abstract: A carbon fiber having catalytic metal supported thereon according to the present invention is a carbon fiber in which a number of hexagonal carbon layers in the shape of a cup having no bottom are stacked. At least part of edges of the hexagonal carbon layers is exposed at an outer surface or inner surface of the carbon fiber. Catalytic metal is supported on the exposed edges of the hexagonal carbon layers. The edges of the hexagonal carbon layers are further exposed by removing a deposited layer formed on the outer surface or inner surface of the carbon fiber. The exposed edges of the hexagonal carbon layers have an extremely high activity and are suitable as a support for catalytic metal.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: May 23, 2006
    Assignees: GSI Creos Corporation
    Inventors: Takashi Yanagisawa, Morinobu Endo
  • Publication number: 20060086702
    Abstract: An energy-efficient method and system for processing target material such as microstructures in a microscopic region without causing undesirable changes in electrical and/or physical characteristics of material surrounding the target material is provided. The system includes a controller for generating a processing control signal and a signal generator for generating a modulated drive waveform based on the processing control signal. The waveform has a sub-nanosecond rise time. The system also includes a gain-switched, pulsed semiconductor seed laser for generating a laser pulse train at a repetition rate. The drive waveform pumps the laser so that each pulse of the pulse train has a predetermined shape. Further, the system includes a laser amplifier for optically amplifying the pulse train to obtain an amplified pulse train without significantly changing the predetermined shape of the pulses.
    Type: Application
    Filed: December 19, 2005
    Publication date: April 27, 2006
    Applicant: GSI GROUP CORP
    Inventor: Donald Smart
  • Patent number: 7027155
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: April 11, 2006
    Assignee: GSI Lumonics Corporation
    Inventors: James J. Cordingley, Joseph J. Griffiths, Donald V. Smart
  • Patent number: 7018600
    Abstract: In an expanded carbon fiber product according to the present invention, a number of hexagonal carbon layers in the shape of a cup having no bottom are stacked. At least part of edges of the hexagonal carbon layers is exposed at an outer surface or inner surface of the expanded carbon fiber product. At least part of gaps between the hexagonal carbon layers is larger than the gaps between the hexagonal carbon layers at the time of vapor growth.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: March 28, 2006
    Assignees: GSI Creos Corporation
    Inventors: Takashi Yanagisawa, Morinobu Endo
  • Patent number: 7018602
    Abstract: A carbon fiber for a field electron emitter has a coaxial stacking morphology of truncated conical tubular graphene layers, each of which includes a hexagonal carbon layer and has a large ring end and a small ring end at opposite ends in the axial direction. The edges of the hexagonal carbon layers are exposed on at least part of the large ring ends. Since all the exposed edges function as electron emission tips, a large amount of emission current can be obtained.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: March 28, 2006
    Assignees: GSI Creos Corporation
    Inventors: Takashi Yanagisawa, Morinobu Endo
  • Patent number: 7018601
    Abstract: A carbon fiber product according to the present invention is a carbon fiber product in which one to several hundreds of hexagonal carbon layers in the shape of a bottomless cup are stacked. Edges of the hexagonal carbon layers are exposed on at least part of an outer surface or inner surface. The exposed part of the edges of the hexagonal carbon layers have a high degree of activity and excel in adhesion to base materials such as resins. Therefore, this carbon fiber product is suitable as a material for composites.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: March 28, 2006
    Assignees: GSI Creos Corporation
    Inventors: Takashi Yanagisawa, Morinobu Endo
  • Patent number: 7014829
    Abstract: A carbon fiber in which hexagonal carbon layers in the shape of a bottomless cup are stacked. At least part of edges of the hexagonal carbon layers are exposed on an outer surface and an inner surface of the carbon fiber. The exposed large ring end has an armchair edge, a zigzag edge, and a chiral edge on the circumference. This carbon fiber has a high degree of activity on the exposed edges of the hexagonal carbon layers and the surfaces of the carbon fiber. Therefore, the carbon fiber can be used as various types of filters and the like.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: March 21, 2006
    Assignee: GSi Creos Corporation
    Inventors: Takashi Yanagisawa, Shunji Higaki
  • Patent number: 7015418
    Abstract: A method of calibrating a laser marking system includes calibrating a laser marking system in three dimensions. The step of calibrating includes storing data corresponding to a plurality of heights. A position measurement of a workpiece is obtained to be marked. Stored calibration data is associated with the position measurement. A method and system for calibrating a laser processing or marking system is provided. The method includes: calibrating a laser marker over a marking field; obtaining a position measurement of a workpiece to be marked; associating stored calibration data with the position measurement; relatively positioning a marking beam and the workpiece based on at least the associated calibration data; and calibrating a laser marking system in at least three degrees of freedom. The step of calibrating includes storing data corresponding to a plurality of positions and controllably and relatively positioning a marking beam based on the stored data corresponding to the plurality of positions.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: March 21, 2006
    Assignee: GSI Group Corporation
    Inventors: Steven P. Cahill, Jonathan S. Ehrmann, You C. Li, Rainer Schramm, Kurt Pelsue
  • Publication number: 20060054608
    Abstract: A method of calibrating a laser marking system includes calibrating a laser marking system in three dimensions. The step of calibrating includes storing data corresponding to a plurality of heights. A position measurement of a workpiece is obtained to be marked. Stored calibration data is associated with the position measurement. A method and system for calibrating a laser processing or marking system is provided. The method includes: calibrating a laser marker over a marking field; obtaining a position measurement of a workpiece to be marked; associating stored calibration data with the position measurement; relatively positioning a marking beam and the workpiece based on at least the associated calibration data; and calibrating a laser marking system in at least three degrees of freedom. The step of calibrating includes storing data corresponding to a plurality of positions and controllably and relatively positioning a marking beam based on the stored data corresponding to the plurality of positions.
    Type: Application
    Filed: November 4, 2005
    Publication date: March 16, 2006
    Applicant: GSI Lumonics Corporation
    Inventors: Steven Cahill, Jonathan Ehrmann, You Li, Rainer Schramm, Kurt Pelsue
  • Patent number: 7004305
    Abstract: A grain bin sweep is adapted to be assembled within a grain bin. The sweep comprises an auger assembly including a shield and an auger; and a tractor frame assembly comprising a frame first part and a frame second part. The sweep components are sized to fit through a small access opening to a grain bin and to then be assembled together within the grain bin. Additionally, the assembly of the grain bin sweep is accomplished using simple hand tools, such as wrenches, screwdrivers, etc. No welding, drilling or other fabrication is required to assemble the parts or components together to form the sweep.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: February 28, 2006
    Assignee: The GSI Group, Inc.
    Inventor: Stuart A. Schaefer
  • Patent number: 7002137
    Abstract: The disclosed optical encoder includes a scale and a sensor head. The scale includes an optical grating and an optical element. The sensor head includes a light source, a detector array, and an index detector all of which are disposed on a substrate. The scale is disposed opposite the sensor head and is disposed for movement relative to the sensor head. The distance between the scale and the sensor head is selected so that the detector array lies near a talbot imaging plane. The light source emits a diverging beam of light, which is directed towards the scale. Light from the diverging beam of light is diffracted by the grating towards the detector array. Light from the diverging beam of light is diffracted by the optical element towards the index detector. The detector array provides a measurement of the position of the sensor head relative to the scale. The index detector provides a reference measurement of the position of the sensor head relative to the scale.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: February 21, 2006
    Assignee: GSI Lumonics Corporation
    Inventors: William G. Thorburn, Norman J. Tobey, Melvin J. J. Teare, Douglas A. Klingbeil, Ralph A. Kelliher
  • Patent number: 6989508
    Abstract: A precision, laser-based method and system for high-speed, sequential processing of material of targets within a field are disclosed that control the irradiation distribution pattern of imaged spots. For each spot, a laser beam is incident on a first anamorphic optical device and a second anamorphic optical device so that the beam is controllably modified into an elliptical irradiance pattern. The modified beam is propagated through a scanning optical system with an objective lens to image a controlled elliptical spot on the target. In one embodiment, the relative orientations of the devices along an optical axis are controlled to modify the beam irradiance pattern to obtain an elliptical shape while the absolute orientation of the devices controls the orientation of the elliptical spot.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: January 24, 2006
    Assignee: GSI Group Corporation
    Inventors: Jonathan S. Ehrmann, James J. Cordingley, Donald V. Smart, Donald J. Svetkoff
  • Publication number: 20060014275
    Abstract: The present invention provides a cell culture carrier and a method for cell culture, which are capable of growing multi-layered cells or stably growing cells with a high density. To solve the above described disadvantage, the cell culture carrier of the present invention comprises cup-stacked type carbon nano tubes produced by a catalytic chemical vapor deposition method, a plurality of bottomless cup-shaped carbon layers (graphene sheet) are stacked in each of the cup-stacked type carbon nano tubes, and edges of the stacked carbon layers are exposed.
    Type: Application
    Filed: May 12, 2005
    Publication date: January 19, 2006
    Applicant: GSI Creos Corporation
    Inventors: Takashi Yanagisawa, Izumi Matsumoto
  • Patent number: 6987786
    Abstract: A laser polarization control apparatus includes a polarization modifying device, such as a liquid crystal variable retarder, and a controller. The polarization modifying device receives a laser beam and modifies the polarization of the laser beam. The controller, which is connected to the polarization modifying device, adjusts an input to the polarization modifying device in order to control modification of the polarization of the laser beam based on alignment of a structure to be processed by the laser beam. For example, the polarization of the laser beam may be rotated to correspond with the alignment of a link in a semiconductor device to be cut by the laser beam. The polarization modifying device is configured for incorporation into a laser processing system that produces the laser beam received by the polarization modifying device and that focuses the laser beam modified by the polarization modifying device onto a workpiece that includes the structure to be processed by the laser beam.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: January 17, 2006
    Assignee: GSI Group Corporation
    Inventors: James J. Cordingley, Donald V. Smart, Michael Plotkin, Joohan Lee, William Lauer, Jonathan S. Ehrmann
  • Patent number: 6982504
    Abstract: A limited rotation torque motor is disclosed including a rotor with at least one pair of magnetic poles and a stator with at least one pair of stator coils. Each stator coil includes a plurality of layers of interconnected flexible circuit composites. Each flexible circuit composite includes a dielectric material and a patterned conductive material on one side of said dielectric material.
    Type: Grant
    Filed: January 24, 2003
    Date of Patent: January 3, 2006
    Assignee: GSI Group Corporation
    Inventor: David C. Brown
  • Patent number: 6979798
    Abstract: Laser system and method for material processing with ultra fast lasers are provided. One aspect of the invention features the method which removes at least a portion of a target structure such as a memory link while avoiding undesirable damage to adjacent non-target structures. The method includes applying a single ultra short laser pulse to the target structure to remove the target structure with the single pulse.
    Type: Grant
    Filed: February 26, 2004
    Date of Patent: December 27, 2005
    Assignee: GSI Lumonics Corporation
    Inventors: Bo Gu, Donald J. Svetkoff, Kurt Pelsue
  • Patent number: 6972268
    Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: December 6, 2005
    Assignee: GSI Lumonics Corporation
    Inventors: Jonathan S. Ehrmann, Joseph J. Griffiths, Donald V. Smart, Donald J. Svetkoff
  • Patent number: 6973104
    Abstract: A pulsed laser system includes a laser pump, a laser rod, a reflector interposed between the laser pump and the laser rod, through which energy from the laser pump enters the laser rod, an output reflector through which energy is emitted from the laser rod, a switch interposed between the laser rod and the output reflector, and a control device. The switch, when closed, causes energy to be stored in the laser rod and, when opened, allows energy to be emitted from the laser rod during an emission period. The control device allows a primary laser pulse emitted from the laser rod during the emission period to impinge on a workpiece and blocks from the workpiece secondary laser emission occurring during the emission period after emission of the primary pulse. The pulsed laser system is operated over a range of repetition rates, so as to cause laser energy to be emitted during a plurality of emission periods at each repetition rate.
    Type: Grant
    Filed: December 7, 2004
    Date of Patent: December 6, 2005
    Assignee: GSI Lumonics Corporation
    Inventor: Donald V. Smart
  • Patent number: 6969503
    Abstract: A carbon fiber has a coaxial stacking morphology of truncated conical tubular graphene layers, wherein each of the graphene layers includes a hexagonal carbon layer and has a large ring end at one end and a small ring end at the other end in the axial direction. When the carbon fiber is subjected to a heat treatment in a non-oxidizing atmosphere, the large ring ends of each two of the hexagonal carbon layers are linked by layer link sections in at least one of groups of the hexagonal carbon layers arranged in an axial direction, and an outer surface is closed to have a multi-semiring structure in cross section. When the carbon fiber is then subjected to a heat treatment in an oxidizing atmosphere, the layer link sections are released, whereby the edges of the hexagonal carbon layers are exposed at the large ring ends in a regularly arranged manner.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: November 29, 2005
    Assignee: GSI Creos Corporation
    Inventors: Takashi Yanagisawa, Shunji Higaki
  • Publication number: 20050233537
    Abstract: A method and system for high-speed, precise micromachining an array of devices are disclosed wherein improved process throughput and accuracy, such as resistor trimming accuracy, are provided. The number of resistance measurements are limited by using non-measurement cuts, using non-sequential collinear cutting, using spot fan-out parallel cutting, and using a retrograde scanning technique for faster collinear cuts. Non-sequential cutting is also used to manage thermal effects and calibrated cuts are used for improved accuracy. Test voltage is controlled to avoid resistor damage.
    Type: Application
    Filed: May 18, 2005
    Publication date: October 20, 2005
    Applicant: GSI Lumonics Corporation
    Inventors: Bruce Couch, Jonathan Ehrmann, Yun Chu, Joseph Lento, Shepard Johnson