Abstract: The invention provides a method and apparatus for directing a radiation beam (504, 606) in a desired direction. There is provided a movable member (10) supported for movement by a fixed member (40) and the movable member has an optical element, e.g a flat mirror (30) fixedly attached thereto. In one embodiment the mirror scans a radiation beam incident thereon in one plane. In a second embodiment, the radiation beam is scanned in two mutually perpendicular planes. A magnetic element (50) having a north and a south magnetic pole is fixedly attached to the movable member (10). A magnetically permeable stator element (70) that is stationary with respect to the movable member (10) and the magnetic element (50) is placed in the field of the magnetic element such that the stator element and said magnetic element mutually generate a magnetic traction force between them.
Type:
Grant
Filed:
February 13, 2002
Date of Patent:
November 14, 2006
Assignee:
GSI Group Corporation
Inventors:
David C. Brown, Felix Stukalin, Michael B. Nussbaum, Evghenii Onoicenco, Edward L. Kelley
Abstract: A method and apparatus for supporting a movable member (10) with respect to a fixed member (40) is provided. The movable member (10) includes a magnetically permeable portion (81) contained therein and magnetic element (50) fixedly attached thereto and movable therewith. The movable member (10) is supported for rotation with respect to the fixed member (40) by an outer bearing surface (11) of the movable member and an inner bearing surface (20) of the fixed member (40). The fixed member (40) provides access to the movable member (10) from two sides thereof. A magnetically permeable stator element (70) is fixedly attached to the fixed member (40) and positioned within a magnetic flux field of the magnetic element (50) such that an air gap (73) is formed between the magnetic element (50) and the stator element (70).
Type:
Grant
Filed:
February 13, 2002
Date of Patent:
October 31, 2006
Assignee:
GSI Group Corporation
Inventors:
David C. Brown, Felix Stukalin, Michael B. Nussbaum, Kurt Pelsue
Abstract: An encoder calculates position error values and applies compensation values to encoder position measurements in-situ. The encoder includes a scale and a multi-section detector for detecting a spatially periodic pattern, such as an optical interference pattern, produced by the scale. The detector includes spatially separated first and second sections. A signal processor estimates respective phase values from detector sections and calculates a phase difference reflecting a spatial position error in the scale. A compensation value is calculated from the phase difference and included in the estimate of the scale position to compensate for this spatial position error. The compensation values may be calculated and used on the fly, or calculated and saved during an in-situ calibration operation and then utilized during normal operation to compensate uncorrected measurements.
Abstract: An embodiment of the invention includes an exhaust gas recirculation (EGR) valve, an intake pipe, and an afterburner. As the intake valve communicates an exhaust gas stream to an EGR valve, an afterburner affixed to an inside wall of the intake pipe captures and burns large particles contained in the exhaust gas stream to prevent obstruction of the EGR valve.
Abstract: A system and method for inspecting machine readable marks on one side of a wafer without requiring transmission of radiant energy from another side of the wafer and through the wafer. The wafer has articles which may include die, chip scale packages, circuit patterns and the like. The marking occurs in a wafer marking system and within a designated region relative to an article position. The articles have a pattern on a first side. The method includes the steps of imaging a first side of the wafer, imaging a second side of the wafer, establishing correspondence between a portion of first side image and a portion of a second side image, and superimposing image data from the first and second sides to determine at least the position of a mark relative to an article.
Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
Type:
Application
Filed:
May 26, 2006
Publication date:
September 28, 2006
Applicant:
GSI Lumonics Corporation
Inventors:
James Cordingley, Jonathan Ehrmann, Joseph Griffiths, Joohan Lee, Donald Smart, Donald Svetkoff
Abstract: Laser processing methods, systems and apparatus having a super-modulating power supply or pumping subsystem and high beam quality (i.e., brightness) are disclosed. The methods, systems and apparatus have significant benefits, improved operation characteristics and material processing capability over currently available methods, systems and apparatus. In at least one embodiment, the beam quality of a high power solid state laser is improved in the presence of thermal lensing. High power laser cutting, scribing, and welding results are improved with a combination of modulation and high beam quality while providing for improved processing speeds.
Type:
Application
Filed:
May 25, 2006
Publication date:
September 21, 2006
Applicant:
GSI Lumonics Ltd.
Inventors:
Gerald Hermann, Thomas Kugler, Mohammed Naeem, Keith Withnall, Walther Goethals, David Filgas
Abstract: A precision, laser-based method and system for high-speed, sequential processing of material of targets within a field are disclosed that control the irradiation distribution pattern of imaged spots. For each spot, a laser beam is incident on a first anamorphic optical device and a second anamorphic optical device so that the beam is controllably modified into an elliptical irradiance pattern. The modified beam is propagated through a scanning optical system with an objective lens to image a controlled elliptical spot on the target. In one embodiment, the relative orientations of the devices along an optical axis are controlled to modify the beam irradiance pattern to obtain an elliptical shape while the absolute orientation of the devices controls the orientation of the elliptical spot.
Type:
Application
Filed:
May 2, 2006
Publication date:
September 21, 2006
Applicant:
GSI Lumonics Corporation
Inventors:
Jonathan Ehrmann, James Cordingley, Donald Smart, Donald Svetkoff
Abstract: A method and system for high-speed, precise micromachining an array of devices are disclosed wherein improved process throughput and accuracy, such as resistor trimming accuracy, are provided. The number of resistance measurements are limited by using non-measurement cuts, using non-sequential collinear cutting, using spot fan-out parallel cutting, and using a retrograde scanning technique for faster collinear cuts. Non-sequential cutting is also used to manage thermal effects and calibrated cuts are used for improved accuracy. Test voltage is controlled to avoid resistor damage.
Type:
Application
Filed:
May 2, 2006
Publication date:
September 14, 2006
Applicant:
GSI Lumonics Corporation
Inventors:
Bruce Couch, Jonathan Ehrmann, Joseph Lento, Shepard Johnson
Abstract: A method and system for locally processing a predetermined microstructure formed on a substrate without causing undesirable changes in electrical or physical characteristics of the substrate or other structures formed on the substrate are provided. The method includes providing information based on a model of laser pulse interactions with the predetermined microstructure, the substrate and the other structures. At least one characteristic of at least one pulse is determined based on the information. A pulsed laser beam is generated including the at least one pulse. The method further includes irradiating the at least one pulse having the at least one determined characteristic into a spot on the predetermined microstructure. The at least one determined characteristic and other characteristics of the at least one pulse are sufficient to locally process the predetermined microstructure without causing the undesirable changes.
Type:
Application
Filed:
May 2, 2006
Publication date:
August 31, 2006
Applicant:
GSI Lumonics Corporation
Inventors:
James Cordingley, Jonathan Ehrmann, Shepard Johnson, Joohan Lee, Donald Smart, Donald Svetkoff
Abstract: A processing apparatus calculates and applies calibrations to sensors that produce quasi-sinusoidal, quadrature signals, using fixed or programmable electronic circuits, a circuit to calculate the phase and magnitude corresponding to the two input (quadrature) signals, and a circuit for accumulating the number of cycles of the input signals. The apparatus also includes a circuit to generate Gain, Offset, and Phase calibration coefficients by comparing a phase space position of a measured phasor with the position of an idealized phasor whose locus in phase space is a circle of predetermined radius with no offset. The calculation of the coefficients occurs without user intervention, according to a pre-programmed rule or rules.
Type:
Application
Filed:
April 23, 2006
Publication date:
August 24, 2006
Applicant:
GSI Group Corporation
Inventors:
Paul Remillard, Stuart Schechter, Douglas Klingbeil
Abstract: An improved method of laser marking semiconductor wafers is provided wherein undesirable subsurface damage to a silicon semiconductor wafer is avoided while providing a relative improvement in marking speed for a predetermined spot diameter. A laser pulse of a laser beam has a predetermined wavelength, pulse width, repetition rate, and energy. The method further includes irradiating a semiconductor wafer with the pulsed laser beam over a spot diameter to produce a machine readable mark on the semiconductor wafer. The mark has a mark depth. The pulse width is less than about 50 ns, and the step of irradiating irradiates over the spot diameter to produce a mark having a mark depth substantially less than about 10 microns.
Abstract: An improved method of laser marking semiconductor wafers is provided wherein undesirable subsurface damage to a silicon semiconductor wafer is avoided while providing a relative improvement in marking speed for a predetermined spot diameter. A laser pulse of a laser beam has a predetermined wavelength, pulse width, repetition rate, and energy. The method further includes irradiating a semiconductor wafer with the pulsed laser beam over a spot diameter to produce a machine readable mark on the semiconductor wafer. The mark has a mark depth. The pulse width is less than about 50 ns, and the step of irradiating irradiates over the spot diameter to produce a mark having a mark depth substantially less than about 10 microns.
Abstract: A watering system for a poultry house comprises a watering line which is suspended from a stabilizing bar by means of a clip. The watering line is comprised of a plurality of pipe segments connected together by a coupling mechanism. The coupling mechanism includes a keying element or portion which is formed in the pipe segment at a predetermined location relative to the drinker opening in the pipe segment. The coupling mechanism thus rotationally fixes adjacent pipe segments relative to each other such that the drinker openings of the pipes segments in the watering line are rotationally aligned and fixed relative to each other. The clip includes a boot which engages a projection on the pipe segment (preferably the drinker saddle) to key the pipe segments relative to the stabilizing bar.
Abstract: A processing apparatus calculates and applies calibrations to sensors that produce quasi-sinusoidal, quadrature signals, using fixed or programmable electronic circuits, a circuit to calculate the phase and magnitude corresponding to the two input (quadrature) signals, and a circuit for accumulating the number of cycles of the input signals. The apparatus also includes a circuit to generate Gain, Offset, and Phase calibration coefficients by comparing a phase space position of a measured phasor with the position of an idealized phasor whose locus in phase space is a circle of predetermined radius with no offset. The calculation of the coefficients occurs without user intervention, according to a pre-programmed rule or rules. The apparatus also includes a circuit to apply the Gain, Offset, and Phase calibration coefficients to the measured quadrature signals xi and yi according to predetermined formulae using scaling coefficients, offset coefficients and a phase coefficient.
Type:
Grant
Filed:
April 26, 2005
Date of Patent:
July 11, 2006
Assignee:
GSI Group Corporation
Inventors:
Paul Remillard, Stuart Schechter, Douglas A. Klingbeil
Abstract: An improved method of laser marking semiconductor wafers is provided wherein undesirable subsurface damage to a silicon semiconductor wafer is avoided while providing a relative improvement in marking speed for a predetermined spot diameter. A laser pulse of a laser beam has a predetermined wavelength, pulse width, repetition rate, and energy. The method further includes irradiating a semiconductor wafer with the pulsed laser beam over a spot diameter to produce a machine readable mark on the semiconductor wafer. The mark has a mark depth. The pulse width is less than about 50 ns, and the step of irradiating irradiates over the spot diameter to produce a mark having a mark depth substantially less than about 10 microns.
Abstract: An optical encoder includes an optical source, a scale, an optical detector and signal processing circuitry. The scale is operative with a light beam from the source to generate an optical pattern such as a line pattern extending in an X direction of relative movement between the scale and the source. The detector generates analog detector output signals indicative of the location of the optical pattern on the detector in an alignment direction orthogonal to the X direction. The detector may include two bi-cell elements spaced apart in the X direction, each element including two cells of complementary shape, such as a sharks-tooth. The signal processing circuitry operates in response to the detector output signals to generate an alignment value indicating a polarity and a magnitude of misalignment between the detector and the scale in the alignment direction.
Type:
Grant
Filed:
September 15, 2004
Date of Patent:
June 27, 2006
Assignee:
GSI Group Corporation
Inventors:
Donald K. Mitchell, William G. Thorburn, Andrew Goldman, Keith M. Hinrichs
Abstract: Methods and systems for laser-based processing of materials are disclosed wherein a scalable laser architecture, based on planar waveguide technology, provides for pulsed laser micromachining applications while supporting higher average power applications like laser welding and cutting. Various embodiments relate to improvements in planar waveguide technology which provide for stable operation at high powers with a reduction in spurious outputs and thermal effects. At least one embodiment provides for micromachining with pulsewidths in the range of femtoseconds to nanoseconds. In another embodiment, 100 W or greater average output power operation is provided for with a diode-pumped, planar waveguide architecture.
Type:
Grant
Filed:
November 13, 2002
Date of Patent:
June 20, 2006
Assignee:
GSI Group Ltd.
Inventors:
David M. Filgas, Frank Haran, Andreas Mank, John Robertson
Abstract: A precision, laser-based method and system for high-speed, sequential processing of material of targets within a field are disclosed that control the irradiation distribution pattern of imaged spots. For each spot, a laser beam is incident on a first anamorphic optical device and a second anamorphic optical device so that the beam is controllably modified into an elliptical irradiance pattern. The modified beam is propagated through a scanning optical system with an objective lens to image a controlled elliptical spot on the target. In one embodiment, the relative orientations of the devices along an optical axis are controlled to modify the beam irradiance pattern to obtain an elliptical shape while the absolute orientation of the devices controls the orientation of the elliptical spot.
Type:
Application
Filed:
January 16, 2006
Publication date:
June 1, 2006
Applicant:
GSI Lumonics Corporation
Inventors:
Jonathan Ehrmann, James Cordingley, Donald Smart, Donald Svetkoff
Abstract: Laser processing methods, systems and apparatus having a super-modulating power supply (6) or pumping subsystem (5) and high beam quality (i.e., brightness) are disclosed. The methods, systems and apparatus have significant benefits, improved operation characteristics and material processing capability over currently available methods, systems and apparatus. In at least one embodiment, the beam quality of a high power solid state laser (2) is improved in the presence of thermal lensing. High power laser cutting, scribing, and welding results are improved with a combination of modulation and high beam quality while providing for improved processing speeds.
Type:
Grant
Filed:
February 19, 2003
Date of Patent:
May 30, 2006
Assignee:
GSI Group Ltd.
Inventors:
Gerald Francis Hermann, Thomas Robert Kugler, Mohammed Naeem, Keith Withnall, Walther Goethals, David M. Filgas