Abstract: A transistor device includes a semiconductor body having a source region, a drift region, and a body region between the source region and the drift region. A source electrode is electrically coupled to the source region. A gate electrode adjacent the body region is dielectrically insulated from the body region by a gate dielectric. A field electrode adjacent the drift region is dielectrically insulated from the drift region by a field electrode dielectric and electrically coupled to one of the gate electrode and the source electrode. A rectifier element electrically couples the field electrode to the one of the gate electrode and the source electrode.
Abstract: An integrated circuit includes a magnetic field sensor and an injection molded magnetic material enclosing at least a portion of the magnetic field sensor.
Abstract: According to one embodiment, a chip card is provided comprising a booster antenna wherein the booster antenna comprises a material having an electrical resistivity of at least 0.05 Ohm*mm2/m.
Type:
Application
Filed:
September 25, 2012
Publication date:
March 27, 2014
Applicant:
INFINEON TECHNOLOGIES AG
Inventors:
Frank Pueschner, Siegfried Hoffner, Peter Stampka, Wolfgang Schindler, Stephan Rampetzreiter
Abstract: A semiconductor device having a semiconductor die is provided. The semiconductor die includes a main horizontal surface, an outer edge, an active area, and a peripheral area. The peripheral area includes a dielectric structure surrounding the active area and extending from the main horizontal surface into the semiconductor die. The dielectric structure includes, in a horizontal cross-section, at least one substantially L-shaped portion that is inclined against the outer edge. Further, a method for forming a semiconductor device is provided.
Type:
Grant
Filed:
August 9, 2011
Date of Patent:
March 25, 2014
Assignee:
Infineon Technologies Austria AG
Inventors:
Franz Hirler, Anton Mauder, Hans-Joachim Schulze
Abstract: A device according to the present invention is configured for transmitting data between two semiconductor chips of a data processor in an encrypted manner, wherein a first semiconductor chip is connected to a second semiconductor chip. The device includes a non-volatile memory element in each of the two semiconductor chips, wherein an encryption initial value for an encryption rule is stored in the memory element of the first semiconductor chip and a decryption initial value associated to the encryption initial value for a decryption rule associated to the encryption rule is stored in the memory element of the second semiconductor chip. Additionally, the first semiconductor chip has a first data transmission interface formed to generate an encryption data stream from an input data stream using the encryption initial value according to the encryption rule.
Abstract: Magnetic field current sensing devices, systems and methods are disclosed. In an embodiment, a current sensor includes a semiconductor die; an isolation layer disposed on the semiconductor die; at least one anchor pad disposed on the isolation layer; a current input and a current output galvanically isolated from the semiconductor die; at least one bond wire coupled to the current input and the current output, a longitudinal portion of the at least one bond wire disposed between the current input and the current output being stitched to the at least one anchor pad; and at least one sensor element arranged to sense a magnetic field induced by a current flowing in the at least one bond wire.
Abstract: Embodiments relate to IC current sensors fabricated using thin-wafer manufacturing technologies. Such technologies can include processing in which dicing before grinding (DBG) is utilized, which can improve reliability and minimize stress effects. While embodiments utilize face-up mounting, face-down mounting is made possible in other embodiments by via through-contacts. IC current sensor embodiments can present many advantages while minimizing drawbacks often associated with conventional IC current sensors.
Abstract: One embodiment provides an integrated circuit including a first non-planar structure and a waveguide configured to provide electromagnetic waves to the first non-planar structure. The first non-planar structure provides a first signal in response to at least some of the electromagnetic waves.
Abstract: A circuit for driving light emitting diodes (LEDs) includes a first semiconductor switch and a freewheeling device coupled between a first supply terminal that provides a supply voltage and a second supply terminal that provides a reference potential. The first semiconductor switch is responsive to a driver signal. An LED and an inductor are coupled in series between a common circuit node of the first semiconductor switch and the freewheeling device and either the first supply terminal or the second supply terminal. A current measurement circuit is coupled to the LED and provides a load current signal which represents a load current passing through the at least one LED. A first feedback circuit includes an on-off controller that receives load current signal and a reference signal.
Abstract: A device including a semiconductor chip and metal foils. One embodiment provides a device including a semiconductor chip having a first electrode on a first face and a second electrode on a second face opposite to the first face. A first metal foil is attached to the first electrode of the semiconductor chip in an electrically conductive manner. A second metal foil is attached to the second electrode of the semiconductor chip in an electrically conductive manner.
Abstract: In accordance with an embodiment, a system includes a programmable gain amplifier having a switchable feedback capacitor coupled in parallel with a first capacitor and a controller. The controller is configured to couple the feedback capacitor between an input node of the programmable gain amplifier and an output node of the programmable gain amplifier in a first gain setting, and switch a first terminal of the feedback capacitor from the output of the programmable gain amplifier to a reference node while a second terminal of the feedback capacitor remains coupled to the input node of the programmable gain amplifier for a first time period when transitioning from the first gain setting to a second gain setting.
Type:
Application
Filed:
September 20, 2012
Publication date:
March 20, 2014
Applicant:
INFINEON TECHNOLOGIES AG
Inventors:
Dieter Draxelmayr, Michael Kropfitsch, Jose Luis Ceballos
Abstract: Some embodiments of the present disclosure relate to a watchdog timer having an enhanced functionality that enables the watchdog timer to monitor a process flow of the microprocessor on a task-by-task basis that enables a simple output signal to be used to determine if the watchdog timer is malfunctioning. The watchdog timer has a state machine that increments a state variable from an initial value over a watchdog period. A deterministic service request, received from a microprocessor, controls operation of the watchdog timer. The deterministic service request has an indicator of a monitoring operation to be performed, a password, and an estimated state variable. A comparison element determines if the microprocessor is operating properly based upon a comparison of the received password to an expected password and the received estimated state variable to an actual state variable.
Abstract: A semiconductor device is described that includes a switch to switch a load current path on and off according to an input signal. The device further includes an over-current detector to compare a load current with a threshold and to signal an over-current when the load current reaches or exceeds the threshold. The device further includes a control unit to set the threshold to a higher value while in a first state of operation and to a lower value while in a second state of operation, and to at least temporarily switch the switch off when an over-current is signalled, change from the first state of operation to the second state of operation when a first pre-defined time span has elapsed, and to change from the from the second state of operation to the first state when the switch is off for more than a second pre-defined time span.
Abstract: A DC power supply circuit comprises an output configured to provide a power supply signal to an RF element for generating an RF output signal. Furthermore, the DC power supply circuit comprises an input configured to receive the RF output signal. The DC power supply circuit is configured to generate the DC power supply signal based on the received RF output signal.
Type:
Application
Filed:
September 14, 2012
Publication date:
March 20, 2014
Applicant:
INFINEON TECHNOLOGIES AG
Inventors:
Saverio Trotta, Winfried Bakalski, Herbert Knapp
Abstract: The present disclosure relate to a sensor system having a low offset error. In some embodiments, the sensor system comprises a sensor configured to generate a sensor signal, which is provided to a main signal path having a first chopping correction circuit and a second chopping correction circuit. The first and second chopping correction circuit chop the sensor signal at first and second frequencies to reduce offset errors, but in doing so generate first and second chopping ripple errors. A first digital offset feedback loop generates a first compensation signal, which is fed back into the main signal path to mitigate the first chopping ripple error. A second digital offset feedback loop generates a second compensation signal, which is fed back into the main signal path to mitigate the second chopping ripple error.
Abstract: In a method for forming a semiconductor device, a gate electrode is formed over a semiconductor body (e.g., bulk silicon substrate or SOI layer). The gate electrode is electrically insulated from the semiconductor body. A first sidewall spacer is formed along a sidewall of the gate electrode. A sacrificial sidewall spacer is formed adjacent the first sidewall spacer. The sacrificial sidewall spacer and the first sidewall spacer overlying the semiconductor body. A planarization layer is formed over the semiconductor body such that a portion of the planarization layer is adjacent the sacrificial sidewall spacer. The sacrificial sidewall spacer can then be removed and a recess etched in the semiconductor body. The recess is substantially aligned between the first sidewall spacer and the portion of the planarization layer. A semiconductor material (e.g., SiGe or SiC) can then be formed in the recess.
Abstract: According to an embodiment, a method for manufacturing a semiconductor structure includes providing a first monocrystalline semiconductor portion having a first lattice constant in a reference direction and forming a second monocrystalline semiconductor portion having a second lattice constant in the reference direction, which is different to the first lattice constant, on the first monocrystalline semiconductor portion.
Abstract: The invention relates to a semiconductor component comprising a semiconductor body, an insulation on the semiconductor body and a cell array arranged at least partly within the semiconductor body. The cell array has at least one p-n junction and at least one contact connection. The insulation is bounded in lateral direction of the semiconductor body by a circumferential diffusion barrier.
Type:
Application
Filed:
September 20, 2013
Publication date:
March 20, 2014
Applicant:
Infineon Technologies AG
Inventors:
Markus Zundel, Gabriela Brase, Peter Nelle, Guenther Schindler
Abstract: A packaged component and a method for making a packaged component are disclosed. In an embodiment the packaged component includes a component carrier having a component carrier contact and a component disposed on the component carrier, the component having a component contact. The packaged component further includes a conductive connection element connecting the component carrier contact with the component contact, an insulating film disposed directly at least on one of a top surface of the component or the conductive connection element, and an encapsulant encapsulating the component carrier, the component and the enclosed conductive connection elements.
Type:
Application
Filed:
September 14, 2012
Publication date:
March 20, 2014
Applicant:
INFINEON TECHNOLOGIES AG
Inventors:
Joachim Mahler, Manfred Mengel, Khalil Hosseini, Franz-Peter Kalz