Patents Assigned to Inphi Corporation
  • Patent number: 9774305
    Abstract: A transimpedance amplifier (TIA) structure includes an input node with a variable inductance component serving to reduce variation in peak amplitude over different gain conditions. According to certain embodiments, an inductor at the TIA input has a first node in communication with a Field Effect Transistor (FET) drain, and a second node in communication with the FET source. A control voltage applied to the FET gate effectively controls the input inductance by adding a variable impedance across the inductor. Under low gain conditions, lowering of inductance afforded by the control voltage applied to the FET reduces voltage peaking TIAs in accordance with embodiments may be particularly suited to operate over a wide dynamic range to amplify incoming electrical signals received from a photodiode.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: September 26, 2017
    Assignee: INPHI CORPORATION
    Inventor: Tom Broekaert
  • Publication number: 20170272046
    Abstract: Split cascade circuits include multiple cascade paths coupled between voltage supply rails. Each cascade path includes a pair of controllable switches. A feedback path is provided for at least one of the cascade circuit paths. An active load circuit may also have a split cascade structure. Multiple-stage circuits, for implementation in Trans-Impedance Amplifiers (TIAs) or analog Receive Front-End modules (RXFEs), for example, include multiple stages of split cascade circuits.
    Type: Application
    Filed: March 18, 2016
    Publication date: September 21, 2017
    Applicant: INPHI CORPORATION
    Inventors: FLORIN PERA, STEPHANE DALLAIRE, BRIAN WALL
  • Patent number: 9759877
    Abstract: A photonic transceiver apparatus in Quad Small Form-factor Pluggable (QSFP) package. The apparatus includes a case having a base member, two partial side members, and a lid member to provide a spatial volume with an opening at a back end of the base member. Additionally, the apparatus includes a printed circuit board (PCB), installed inside the spatial volume over the base member having a pluggable electrical connector at the back end. Further, the apparatus includes multiple optical transmitting devices in mini-transmit-optical-sub-assembly package, each being mounted on a common support structure and having a laser output port in reversed orientation toward the back end. Furthermore, the apparatus includes a silicon photonics chip, including a fiber-to-silicon attachment module, mounted on the PCB and coupled to a modulation driver module and a trans-impedance amplifier module.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: September 12, 2017
    Assignee: INPHI CORPORATION
    Inventors: Radhakrishnan L. Nagarajan, Peng-Chih Li, Masaki Kato
  • Patent number: 9762984
    Abstract: In an example, the present invention includes an integrated system on chip device. The device has a data input/output interface provided on the substrate member and configured for a predefined data rate and protocol. In an example, the data input/output interface is configured for number of lanes numbered from four to one hundred and fifty. In an example, the SerDes block is configured to convert a first data stream of N into a second data stream of M such that each of the first data stream having a first predefined data rate at a first clock rate and each of the second data stream having a second predefined data rate at a second clock rate.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: September 12, 2017
    Assignee: INPHI CORPORATION
    Inventor: Radhakrishnan L. Nagarajan
  • Patent number: 9759865
    Abstract: A compact polarization beam splitter is formed by cascading two stages of three restricted MMIs. Each MIMI is configured to set ultra compact width and length for a rectangular waveguide body to limit no more than 4 modes therein working as a polarization beam splitter in a 50 nm wavelength window around 1300 nm. Each MMI is further configured to couple an input at a first end and a TE bar output and a TM cross output at a second end of the rectangular waveguide body. The locations of the input/output waveguide ports are designated to be a distance of ? of the width away from a middle line from the first end to the second end. Two second-stage MMIs have their inputs coupled to the TE bar output and the TM cross output of the first-stage MMI and provide a second-stage TE bar output and a second-stage TM cross output, respectively.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: September 12, 2017
    Assignee: INPHI CORPORATION
    Inventor: Jie Lin
  • Patent number: 9755870
    Abstract: The present invention is directed to communication systems. More specifically, embodiments of the present invention provide a technique and system thereof for performing eye modulation. Eye modulation is performed at the transmission side of a PAM communication system to compensate for distortion and non-linearity and generate an output waveform. Spacing among eye levels is adjusted by performing symmetric modulation using ? parameter and asymmetric modulation using ? parameter. A correction module measures the output waveform and sends feedback signals to a control module to adjust the ? parameter and the ? parameter. There are other embodiments as well.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: September 5, 2017
    Assignee: INPHI CORPORATION
    Inventors: Halil Cirit, Karthik S. Gopalakrishnan
  • Patent number: 9746744
    Abstract: A method of forming a waveguide for a self-aligned Mach-Zehnder-Interferometer. The method includes forming a waveguide on a substrate and providing a first mask with a first opening exposing a first width and a pair of second widths towards opposite sides of the first width. Additionally, the method includes doping a first dopant of a first concentration through the first opening into a first thickness of the waveguide to form a first semiconducting phase thereof. The method includes providing a second mask with a second opening exposing part of the waveguide and doping a second dopant of a second concentration through the second opening into the part of the waveguide to form a second semiconductor phase thereof sharing a boundary with the first semiconducting phase to form a PN junction across the boundary. The boundary is allowed to vary with a margin of tolerance within the first width.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: August 29, 2017
    Assignee: INPHI CORPORATION
    Inventors: Jie Lin, Masaki Kato, Robb Johnson
  • Patent number: 9746906
    Abstract: Apparatus and techniques relating to data interface power consumption control are disclosed. Components of a data transfer module may be selectively moved between their normal operating states and reduced power states at times when the data transfer module is not to be used for transferring data. Decisions as to particular components that are to be moved to their reduced power states may be based on respective timing characteristics of the components and/or respective power consumption characteristics of the components, for example. In some embodiments, an action may be performed to reduce a powering up time of the data transfer module when normal operation of the data transfer module is to resume. In the case of a multiple-connection interface having respective data transfer modules for each connection, the interface may be partially shut down by moving a subset of the data transfer modules into reduced power states.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: August 29, 2017
    Assignee: INPHI CORPORATION
    Inventors: Fredrik Olsson, Shawn Lawrence Scouten, Ryan Patrick Donohue
  • Patent number: 9742498
    Abstract: A PAM4 driver with at least 56 Gbps speed for driving a Mach-Zehnder modulator. The PAM4 driver is configured as 2-bit CMOS digital-to-analog convertor including a drive control module for receiving a pair of incoming differential digital data and generating a first processed reference signal and a second processed reference signal. The PAM4 driver further includes a mirrored buffer circuit to produce two sets of four voltage levels. Furthermore, the PAM4 driver includes a decoder module controlled by a switch bias control module configured to decode each of the two sets of four voltage levels for generating a first output signal and a complementary second out signal with 4 independently adjustable analog levels for driving the Mach-Zehnder modulator with close ended termination resistor.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: August 22, 2017
    Assignee: INPHI CORPORATION
    Inventor: Radhakrishnan L. Nagarajan
  • Patent number: 9743161
    Abstract: In an example, the present invention includes an integrated system on chip device. The device has a variable bias block configured with the control block, the variable bias block being configured to selectively tune each of a plurality of laser devices provided on the silicon photonics device to adjust for at least a wavelength of operation, a fabrication tolerance, and an extinction ratio.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: August 22, 2017
    Assignee: INPHI CORPORATION
    Inventor: Radhakrishnan L. Nagarajan
  • Patent number: 9742551
    Abstract: The present application is directed to data communication. More specifically, embodiments of the present invention provide a SerDes system that includes multiple communication lanes that are aligned using a clock signal. Each of the communication lanes comprises a receiver, a buffer, and a transmitter. The receiver uses multiple sampling lanes for data sampling and clock recovery. Sampled data are stored at the buffer and transmitted by the transmitter. There are other embodiments as well.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: August 22, 2017
    Assignee: INPHI CORPORATION
    Inventors: Simon Forey, Parmanand Mishra
  • Patent number: 9742594
    Abstract: Clock timing skew may occur during operation of a time-interleaved receiver. It would be beneficial to try to determine if there is timing skew, and if there is, then address it, such as by reducing or eliminating some or all of the timing skew. Embodiments are described herein that may achieve this. In one embodiment, a method includes generating at least two clocks having the same frequency but a different phase. Intersymbol interference (ISI) values are then determined, one for each of the clocks, by: for each clock, sampling a signal using the clock and determining a value representing ISI based on the sampled signal. A clock phase of at least one of the clocks is adjusted in response to at least one of the ISI values being different from a reference ISI value.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: August 22, 2017
    Assignee: INPHI CORPORATION
    Inventors: Stephane Dallaire, Benjamin Smith
  • Patent number: 9742550
    Abstract: Systems and methods for high speed communications are described herein. In certain aspects, the systems and methods include innovative transceiver architectures and techniques for re-timing, multiplexing, de-multiplexing and transmitting data. The systems and methods can be used to achieve reliable high-speed point-to-point communication between different electronic devices, computing devices, storage devices and peripheral devices.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: August 22, 2017
    Assignee: INPHI CORPORATION
    Inventors: Marcel Louis Lugthart, Jeffrey Zachan, Linghsiao Jerry Wang
  • Patent number: 9742689
    Abstract: Systems and methods for high speed communications are described herein. In certain aspects, the systems and methods include innovative transceiver architectures and techniques for re-timing, multiplexing, de-multiplexing and transmitting data. The systems and methods can be used to achieve reliable high-speed point-to-point communication between different electronic devices, computing devices, storage devices and peripheral devices.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: August 22, 2017
    Assignee: INPHI CORPORATION
    Inventors: Linghsiao Jerry Wang, Marcel Louis Lugthart, Jeffrey Zachan
  • Patent number: 9735881
    Abstract: A coherent receiver comprises an ingress signal path having an ingress line-side interface, and an ingress host-side interface. The ingress signal path is configured to receive an analog signal vector at the ingress line-side interface, to demodulate the analog signal vector, and to output a digital data signal at the ingress host-side interface. The coherent receiver also comprises clock and timing circuitry configured to receive a single reference clock signal and to provide a plurality of modified ingress path clock signals to different components of the ingress signal path, the plurality of modified ingress path clock signals derived from the single reference clock signal and the plurality of modified ingress path clock signals having different clock rates. The receiver, transmitter, or transceiver can operate in a plurality of programmable operating modes to accommodate different modulation/de-modulation schemes, error correction code schemes, framing/mapping protocols, or other programmable features.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: August 15, 2017
    Assignee: INPHI CORPORATION
    Inventors: Oscar Ernesto Agazzi, Diego Ernesto Crivelli, Paul Voois, Ramiro Rogelio Lopez, Jorge Manuel Finochietto, Norman L. Swenson, Mario Rafael Hueda, Hugo Santiago Carrer, Vadim Gutnik, Adrián Ulises Morales, Martin Ignacio del Barco, Martin Carlos Asinari, Federico Nicolas Paredes, Alfredo Javier Taddei, Mauro M. Bruni, Damian Alfonso Morero, Facundo Abel Alcides Ramos, María Laura Ferster, Elvio Adrian Serrano, Pablo Gustavo Quiroga, Roman Antonio Arenas, Matias German Schnidrig, Alejandro Javier Schwoykoski
  • Patent number: 9728829
    Abstract: A circuit for blocking undesired input direct current of AC-coupled broadband circuits. The circuit includes a capacitor coupled to an input port and a common node. The input port receives a RF input signal. Additionally, the circuit includes a current source supplying a DC current to the common node leading a bias current to an output port. Further, the circuit includes a variable voltage source through an internal load and a close loop with an application circuit having an input load coupled to the output port to determine various bias voltages to control the bias current at the output port in association with a RF output signal that is substantially free of any input direct current originated from the RF input signal and is associated with an inherent low cut-off frequency independent of the various bias voltages.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: August 8, 2017
    Assignee: INPHI CORPORATION
    Inventors: Ariel Leonardo Vera Villarroel, Subramaniam Shankar, Steffen O. Nielsen
  • Patent number: 9726841
    Abstract: An integrated photo detector with enhanced electrostatic discharge damage (ESD) protection. The integrated photo detector includes a first photodiode formed in the SOI substrate and associated with a first p-electrode and a first n-electrode. Additionally, the integrated photo detector includes a second photodiode formed in the SOI substrate associated with a second p-electrode and a second n-electrode forming a capacitance no larger than a few femto Faradays. Moreover, the integrated photo detector includes a first electrode and a second electrode disposed respectively on the SOI substrate. The first/second electrode is respectively connected to the first p/n-electrode via a first/second metallic layer patterned with a reduced width from the first/second electrode to the first p/n-electrode and connected to the second p/n-electrode via a first/second metallic wire to make a parallel coupling between the first photodiode and the second photodiode with an ESD threshold of about 100V.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: August 8, 2017
    Assignee: INPHI CORPORATION
    Inventors: Jie Lin, Masaki Kato
  • Patent number: 9729240
    Abstract: The present invention is directed to data communication system and methods. More specifically, various embodiments of the present invention provide a communication interface that is configured to transfer data at high bandwidth using nDSQ format(s) over optical communication networks. In certain embodiments, the communication interface is used by various devices, such as spine switches and leaf switches, within a spine-leaf network architecture, which allows large amount of data to be shared among servers.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 8, 2017
    Assignee: INPHI CORPORATION
    Inventors: Jamal Riani, Sudeep Bhoja
  • Patent number: 9722621
    Abstract: The present invention is directed integrated circuits and methods thereof. More specifically, an embodiment of the present invention provides a comparator calibration loop where a digital integrator stores a running sum based on the output of a comparator. A DAC converts the running sum and generates an offset calibration voltage, which is filtered by a low-pass filter module, and the filtered offset calibration voltage is used to cancel out the intrinsic offset voltage and low frequency noise of the comparator. There are other embodiments as well.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: August 1, 2017
    Assignee: INPHI CORPORATION
    Inventors: Mohammad Ranjbar, Jorge Pernillo
  • Patent number: 9722555
    Abstract: The present invention is directed to electrical circuits and techniques thereof. More specifically, embodiments of the present invention provide a differential amplifier that has a differential amplifier section, a current source, and a feedback section. The differential amplifier section comprises NMOS transistors that receives two voltage inputs and generate a differential output. The current source provides a long tail for the differential amplifier section. The feedback section generates a feedback voltage based on a reference bias voltage. The feedback voltage is used by an amplifier to control the current source and to keep the biasing and gain of the differential amplifier substantially constant. There are other embodiments as well.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: August 1, 2017
    Assignee: INPHI CORPORATION
    Inventors: Rajasekhar Nagulapalli, Simon Forey, Parmanand Mishra