Patents Assigned to Institute of Physics
  • Patent number: 9340898
    Abstract: A technology for growing silicon carbide single crystals by PVT (Physical Vapor Transport) and a technology for in-situ annealing the crystals after growth is finished is provided. The technology can achieve real-time dynamic control of the temperature distribution of growth chamber by regulating the position of the insulation layer on the upper part of the graphite crucible, thus controlling the temperature distribution of growth chamber in real-time during the growth process according to the needs of the technology, which helps to significantly improve the crystal quality and production yield.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: May 17, 2016
    Assignees: Tankeblue Semiconductor Co. Ltd., Institute of Physics Chinese Academy of Sciences
    Inventors: Xiaolong Chen, Bo Wang, Longyuan Li, Tonghua Peng, Chunjun Liu, Wenjun Wang, Gang Wang
  • Publication number: 20160130723
    Abstract: The present invention relates to a barium tetraborate compound and a barium tetraborate non-linear optical crystal, and a preparation method and use thereof, wherein the chemical formulae of the barium tetraborate compound and the non-linear optical crystal thereof are both BaB4O7, with a molecular weight of 292.58; the barium tetraborate non-linear optical crystal has a non-centrosymmetric structure, which belongs to a hexagonal system, and has a space group P65 and lattice parameters of a=6.7233(6) ?, c=18.776(4) ?, V=735.01(17) ?3, and Z=6, wherein the powder frequency-doubled effect thereof is two times that of KDP (KH2PO4), and the ultraviolet cut-off edge is lower than 170 nm.
    Type: Application
    Filed: January 23, 2014
    Publication date: May 12, 2016
    Applicant: Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
    Inventors: Shilie PAN, Zhaohui CHEN
  • Patent number: 9290435
    Abstract: Disclosed is a molecular glass of a spirofluorene derivative having a molecular structure as follows: formula (I), wherein each of R1-R12 is a hydrogen atom, a hydroxyl group, a methoxyl group or an acid-sensitive substituent; substituents R1˜R12 can be identical or different, but on the same benzene ring the substituents cannot all be hydrogen atoms. The molecular glass has a good solubility in various polar solvents, is suitable to be made into a film; meanwhile the molecular glass has a very high glass transition temperature and meets the requirements of the photolithography processing technology. Also disclosed is a preparation method of the above-mentioned molecular glass of a spirofluorene derivative. The synthetic process of the method is simple and suitable for industrialization.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 22, 2016
    Assignee: Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences
    Inventors: Yi Li, Qingshan Hao, Jinping Chen, Yi Zeng, Tianjun Yu
  • Patent number: 9187318
    Abstract: A laser micro/nano processing system (100, 200, 300, 400) comprises: a laser light source used to provide a first laser beam having a first wavelength and a second laser beam having a second wavelength different from the first wavelength, with the pulse width of the first laser beam being in the range from a nanosecond to a femtosecond; an optical focusing assembly used to focus the first laser beam and the second laser beam to the same focal point; and a micro mobile platform (21) controlled by a computer. Also disclosed are a method for micro/nano-processing photosensitive materials with a laser and a method for fabricating a device with a micro/nano structure using laser two-photon direct writing technology. In the system and methods, spatial and temporal overlapping of two laser beams is utilized, so as to obtain a micro/nano structure with a processing resolution higher than that of a single laser beam, using an average power lower than that of a single laser beam.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: November 17, 2015
    Assignee: Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences
    Inventors: Xuanming Duan, Shu Chen, Hongzhong Cao, Xianzi Dong, Zhensheng Zhao
  • Patent number: 9159909
    Abstract: An electrical device includes an insulating substrate and a magnetically doped TI quantum well film. The insulating substrate includes a first surface and a second surface. The magnetically doped topological insulator quantum well film is located on the first surface of the insulating substrate. A material of the magnetically doped topological insulator quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3, wherein 0<x<1, 0<y<2, and values of x and y satisfies that an amount of a hole type charge carriers introduced by a doping with Cr is substantially equal to an amount of an electron type charge carriers introduced by a doping with Bi, the magnetically doped topological insulator quantum well film is in 3 QL thickness to 5 QL thickness.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: October 13, 2015
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Ke He, Xu-Cun Ma, Xi Chen, Li-Li Wang, Ya-Yu Wang, Li Lv, Cui-Zu Chang, Xiao Feng
  • Patent number: 9142760
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0.05<x<0.3, 0<y<0.3, and 1:2<x:y<2:1. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: September 22, 2015
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Ke He, Xu-Cun Ma, Xi Chen, Li-Li Wang, Cui-Zu Chang, Xiao Feng, Yao-Yi Li, Jin-Feng Jia
  • Patent number: 9118336
    Abstract: A physical system for a chip-scale coherent population trapping (CPT) atomic clock. The physical system includes: a vertical-cavity surface-emitting laser (VCSEL) device, a first polarizing beam splitter, a first ?/4 wave plate, a chip of an atomic vapor cell, a second ?/4 wave plate, a reflection device, a lens, a second polarizing beam splitter, and a photo detector. The first polarizing beam splitter, the first ?/4 wave plate, the chip of the atomic vapor cell, the second ?/4 wave plate, and the reflection device are disposed in sequence. The lens, the second polarizing beam splitter, and the photo detector are disposed in sequence.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: August 25, 2015
    Assignee: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences
    Inventors: Sihong Gu, Yi Zhang, Suping Qu, Xueming Shi
  • Patent number: 9073037
    Abstract: Disclosed are a semiconductor photocatalyst for the photocatalytic reforming of biomass derivatives for hydrogen generation, and preparation and use thereof. The semiconductor photocatalyst has the atomic composition ratio of M˜N-Ax; wherein M˜N are IIB group elements to VIA group elements, or IIIA group elements to VA group elements, A being one element or more than two elements selected from the group consisting of cobalt, nickel, iron, copper, chromium, palladium, platinum, ruthenium, rhodium, iridium and silver; and 0.02%?x?1.0%. The method of in-situ preparation of the highly effective semiconductor photocatalyst and catalytically reforming biomass derivatives for hydrogen generation by driving photoreaction with visible light via quantum dots is simple, fast, highly effective, inexpensive and practical. The in situ reaction can occur in sunlight without the need of harsh conditions such as calcination.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: July 7, 2015
    Assignee: Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences
    Inventors: Lizhu Wu, Zhijun Li, Chengbo Li, Xubing Li, Jiaxin Li
  • Patent number: 9035552
    Abstract: The proposed method allows forming cathode arc plasma flows for high quality coatings. The plasma flows are transported in a plasma-optical system by means of a transport magnetic field generated by electromagnetic coils, super-positioning a constant magnetic field and additional variable magnetic fields deflecting the plasma flows from internal surfaces of the system's elements. In a device for implementing the proposed method, an arc power supply is connected to an anode via a coil, surrounding the anode. In a linear embodiment of the system, an electrically conductive tube section inside the anode is connected to one end of the deflection coil. The other end is connected to the positive terminal of power supply. In the system's non-linear embodiment, additional magnetic fields are established using two additional electromagnetic coils, surrounding the anode and a nonlinear part respectively. The method and device allow for a significantly reduction of losses of macroparticle-free plasma.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: May 19, 2015
    Assignee: National Science Center “Kharkov Institute of Physics and Technology”
    Inventors: Volodymyr Vasilievich Vasyliev, Volodymyr Evgenievich Strelnytskiy
  • Patent number: 9018617
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0<x<1, 0<y<2. Values of x and y satisfies that an amount of a hole type charge carriers introduced by a doping with Cr is substantially equal to an amount of an electron type charge carriers introduced by a doping with Bi. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: April 28, 2015
    Assignees: Tsinghua University, Institute of Physics, Chinese Academy of Sciences
    Inventors: Qi-Kun Xue, Ke He, Xu-Cun Ma, Xi Chen, Li-Li Wang, Cui-Zu Chang, Xiao Feng, Yao-Yi Li, Jin-Feng Jia
  • Patent number: 9001861
    Abstract: A device for producing a coherent bi-color light source, including: an array substrate, a first laser tube driven by a first direct current signal, a second laser tube driven by a modulation signal coupled by a microwave signal and a second DC signal, a half wave plate, a birefringent crystal, a first quarter wave plate, a partially reflecting plane mirror, and a second quarter wave plate. The first laser tube and the second laser tube are fixed on the array substrate. The half wave plate, the birefringent crystal, the first quarter wave plate, the partially reflecting plane mirror, and the second quarter wave plate are disposed in sequence in an emission direction of a laser beam emitted by the first laser tube. The second laser tube is disposed opposite to the birefringent crystal.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: April 7, 2015
    Assignee: Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences
    Inventors: Enxue Yun, Bozhong Tan, Sihong Gu
  • Publication number: 20150085349
    Abstract: Provided is a nonlinear optical device manufactured with 4H silicon carbide crystal. The nonlinear optical crystal may be configured to alter at least a light beam (12) at a frequency to generate at least a light beam (16) at a further frequency different from the frequency. The nonlinear optical crystal comprises a 4H silicon carbide crystal (13). The nonlinear optical device is more compatible with practical applications in terms of outputting mid-infrared laser at high power and high quality and thus are more applicable in practice, because the 4H silicon carbide crystal has a relatively high laser induced damage threshold, a relatively broad transmissive band (0.38-5.9 ?m and 6.6-7.08 ?m), a relatively great 2nd-order nonlinear optical coefficient (d15=6.7 pm/V), a relatively great birefringence, a high thermal conductivity (490 Wm?1K?1), and a high chemical stability.
    Type: Application
    Filed: January 6, 2012
    Publication date: March 26, 2015
    Applicant: Institute of Physics, Chinese Academy of Sciences
    Inventors: Xiaolong Chen, Shunchong Wang, Tonghua Peng, Gang Wang, Chunjun Liu, Wenjun Wang, Shifeng Jin
  • Publication number: 20150047371
    Abstract: Provided is a high-strength, bonded La(Fe, Si)13-based magnetocaloric material, as well as a preparation method and use thereof. The magnetocaloric material comprises magnetocaloric alloy particles and an adhesive agent, wherein the particle size of the magnetocaloric alloy particles is less than or equal to 800 ?m and are bonded into a massive material by the adhesive agent; the magnetocaloric alloy particle has a NaZn13-type structure and is represented by a chemical formula of La1-xRx(Fe1-p-qCopMnq)13-ySiyA?, wherein R is one or more selected from elements cerium (Ce), praseodymium (Pr) and neodymium (Nd), A is one or more selected from elements C, H and B, x is in the range of 0?x?0.5, y is in the range of 0.8?y?2, p is in the range of 0?p?0.2, q is in the range of 0?q?0.2, ? is in the range of 0???3.0. Using a bonding and thermosetting method, and by means of adjusting the forming pressure, thermosetting temperature, and thermosetting atmosphere, etc.
    Type: Application
    Filed: May 17, 2012
    Publication date: February 19, 2015
    Applicants: Institute of Physics, Chinese Academy of Sciences, Hubei Quanyang Magnetic Materials Manufacturing Co., Ltd.
    Inventors: Fengxia Hu, Ling Chen, Lifu Bao, Jing Wang, Baogen Shen, Jirong Sun, Huayang Gong
  • Publication number: 20150030642
    Abstract: The invention discloses a polymer micro-needle array chip, comprising a substrate and a micro-needle array standing thereon; the material for preparing the micro-needle array is a polyacrylamides polymer, with the molecular weight of 1.0×104-2.0×105, the Vickers hardness of 150-600 HV, and the impact strength of 5-30 J/m. The polymer micro-needle array chip has a high mechanical strength and a sharp needle tip, and it can easily dissolve or swell on contact with a water-containing environment, which helps the drug to be released slowly in the skin.
    Type: Application
    Filed: May 25, 2012
    Publication date: January 29, 2015
    Applicant: Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences
    Inventors: Feipeng Wu, Yuanhua Miao
  • Publication number: 20140321199
    Abstract: Disclosed are nano multilayer film of electrical field modulation type, a field effect transistor of electrical field modulation type, an electrical field sensor of switch type, and a random access memory of electrical field drive type, for obtaining an electro-resistance effect in an electrical field modulation multilayer film at room temperature. The nano multilayer film comprises in succession from bottom to top a bottom layer (102), a substrate (101), a bottom layer (103), a functional layer (104), a buffer layer (105), an insulation layer (106), an intermediate conductive layer (107), and a cap layer (108), and the buffer layer (107) and the insulation layer (106) can be selectively added as required when the intermediate conductive layer (107) is a magnetic metal, a magnetic alloy or a magnetic metal composite layer.
    Type: Application
    Filed: September 19, 2012
    Publication date: October 30, 2014
    Applicant: Institute of Physics, Chinese Academy of Sciences
    Inventors: Xiu-Feng Han, Hou-Fang Liu, Syed Rizwan, Da-Lai Li, Peng Guo, Guo-Qiang Yu, Dong-Ping Liu, Yi-Ran Chen
  • Publication number: 20140290274
    Abstract: The invention provides a first-order phase-transition La(Fe,Si)13-based magnetocaloric material showing small hysteresis loss, and preparation and use thereof. The material has a NaZn13-type structure, is composed of granules with a particle size in the range of 15˜200 ?m and not less than 15 ?m, and is represented by chemical formula La1-xRx(Fe1-p-qCopMnq)13-ySiyA?. The method for preparing the material comprises steps of preparing the material La1-xRx(Fe1-p-qCopMnq)13-ySiyA? by smelting and annealing; and then crushing the material into powder with a particle size in the range of 15˜200 ?m. Without changing the components, a La(Fe,Si)13-based magnetocaloric material showing small hysteresis loss and strong magnetocaloric effect can be obtained by adjusting the particle size within the range of 15˜200 ?m. Utilization of this type of materials in the practical magnetic refrigeration application is of great significance.
    Type: Application
    Filed: October 24, 2011
    Publication date: October 2, 2014
    Applicant: Institute of Physics, Chinese Academy of Sciences
    Inventors: Fengxia Hu, Ling Chen, Jing Wang, Lifu Bao, Rongrong Wu, Baogen Shen, Jirong Sun, Huayang Gong
  • Patent number: 8773750
    Abstract: The present invention relates to a KBBF family nonlinear optical crystal-prism coupler and its method of fabrication. The coupler comprises: a KBBF family crystal with two smooth surfaces; transition layers each of which is deposited on respective one of the two smooth surfaces of the KBBF family crystal; and a pair of prisms each of which optically contacts with respective one of the activated transition layers. The present invention further provides a KBBF family nonlinear optical crystal-prism coupler that comprises: a KBBF family crystal with two smooth surfaces; a pair of prisms each of which has a smooth surfaces; first transition layers each of which is deposited on respective one of the two smooth surfaces of the KBBF family crystal; and second transition layers each of which is deposited on a smooth surface of respective one of the pair of prisms, wherein the first and second transition layers are integral by optical contact.
    Type: Grant
    Filed: March 21, 2012
    Date of Patent: July 8, 2014
    Assignee: Technical Institute of Physics and Chemistry, Chinese Academy of Sciences
    Inventors: Chuangtian Chen, Yong Zhu, Feidi Fan, Xiaoyang Wang, Rukang Li
  • Publication number: 20140178674
    Abstract: A topological insulator structure includes an insulating substrate and a magnetically doped TI quantum well film located on the insulating substrate. A material of the magnetically doped TI quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3. 0.05<x<0.3, 0<y<0.3, and 1:2<x:y<2:1. The magnetically doped TI quantum well film is in 3 QL to 5 QL.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: Institute of Physics, Chinese Academy of Sciences, Tsinghua University
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, CUI-ZU CHANG, XIAO FENG, YAO-YI LI, JIN-FENG JIA
  • Publication number: 20140175382
    Abstract: An electrical device includes an insulating substrate and a magnetically doped TI quantum well film. The insulating substrate includes a first surface and a second surface. The magnetically doped topological insulator quantum well film is located on the first surface of the insulating substrate. A material of the magnetically doped topological insulator quantum well film is represented by a chemical formula of Cry(BixSb1-x)2-yTe3, wherein 0<x<1, 0<y<2, and values of x and y satisfies that an amount of a hole type charge carriers introduced by a doping with Cr is substantially equal to an amount of an electron type charge carriers introduced by a doping with Bi, the magnetically doped topological insulator quantum well film is in 3 QL thickness to 5 QL thickness.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: Institute of Physics, Chinese Academy of Sciences, Tsinghua University
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, YA-YU WANG, Li Lv, CUI-ZU CHANG, XIAO FENG
  • Publication number: 20140174343
    Abstract: A method for forming a topological insulator structure is provided. A strontium titanate substrate having a surface (111) is used. The surface (111) of the strontium titanate substrate is cleaned by heat-treating the strontium titanate substrate in the molecular beam epitaxy chamber. The strontium titanate substrate is heated and Bi beam, Sb beam, Cr beam, and Te beam are formed in the molecular beam epitaxy chamber in a controlled ratio achieved by controlling flow rates of the Bi beam, Sb beam, Cr beam, and Te beam. The magnetically doped topological insulator quantum well film is formed on the surface (111) of the strontium titanate substrate. The amount of the hole type charge carriers introduced by the doping with Cr is substantially equal to the amount of the electron type charge carriers introduced by the doping with Bi.
    Type: Application
    Filed: October 16, 2013
    Publication date: June 26, 2014
    Applicants: Institute of Physics, Chinese Academy of Sciences, Tsinghua University
    Inventors: QI-KUN XUE, KE HE, XU-CUN MA, XI CHEN, LI-LI WANG, CUI-ZU CHANG, XIAO FENG, YAO-YI LI, JIN-FENG JIA