Patents Assigned to Instrumentation Laboratory
  • Publication number: 20200216235
    Abstract: A pierceable self-resealing stopper for a container is disclosed. The disclosed stopper is suitable for sealing a container containing reagents for use in a high-throughput analysis system in which reagents in the container are accessed by an aspirator probe piercing the stopper. The stopper is configured for being pierced and resealing itself a large number of times without degradation of the stopper by coring or fragmentation, for example. A set of protrusions extending from a top surface of the stopper is depressed to stretch a thin diaphragm area between the protrusions prior to and during insertion of the probe. After extraction of the probe, the protrusions are allowed to return to a relaxed state, which discontinues stretching of the diaphragm area and reseals the container.
    Type: Application
    Filed: January 2, 2020
    Publication date: July 9, 2020
    Applicant: Instrumentation Laboratory Company
    Inventors: Christopher Francis Farren, Joshua A. Shreve
  • Publication number: 20200209121
    Abstract: Described is an automated reagent mixing container for separately storing and automatically mixing together at least two stored reagent components.
    Type: Application
    Filed: March 6, 2020
    Publication date: July 2, 2020
    Applicant: Instrumentation Laboratory Company
    Inventors: Gert Blankenstein, Hansong Zeng, JR.
  • Publication number: 20200200731
    Abstract: An apparatus for measuring blood clotting time includes a blood clot detection instrument and a cuvette for use with the blood clot detection instrument. The cuvette includes a blood sample receptor-inlet; a channel arrangement including at least one test channel for performing a blood clotting time measurement, a sampling channel having at least one surface portion that is hydrophilic, communicating with the blood sample receptor-inlet and the at least one test channel, and a waste channel having at least one surface portion that is hydrophilic, communicating with the sampling channel; and a vent opening communicating with the sampling channel. The sampling channel, the vent opening and the waste channel, coact to automatically draw a requisite volume of a blood sample deposited at the blood receptor-inlet, into the sampling channel.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Applicant: Instrumentation Laboratory Company
    Inventors: Gregory M. Colella, Henry D. Huang, Anthony F. Kuklo, JR., Dimitri Shishkin, Maria Figueroa, James A. Mawhirt
  • Publication number: 20200191636
    Abstract: A fluid aspiration probe apparatus for automatic fluid testing equipment includes a pair of electrodes mounted on a distal probe tip. The electrodes are coupled to an impedance measurement apparatus via conductive pathways along the probe. The impedance measurements and probe tip height are monitored as the probe tip is lowered into a fluid sample. Boundaries between layers of fluid in the container are detected by recognizing sudden changes in the impedance measurements and heights of the boundaries are determined by tracking the position of probe tip when the sudden changes of impedance occur.
    Type: Application
    Filed: December 17, 2018
    Publication date: June 18, 2020
    Applicant: Instrumentation Laboratory Company
    Inventors: Brian Joseph Bosy, Josef Kerimo
  • Patent number: 10648907
    Abstract: An optical system and method for quantifying total protein in whole blood or other multi-phase liquids and colloidal suspensions uses refractometry without preliminary steps such as cell separation or centrifugation. A refractometer is integrated with a flow cell to enable the refractive index of a flowing sample to be measured based on a substantially cell free boundary layer of the sample that is present under certain flow conditions. Dimensions of the flow cell are selected to produce a cell-free layer in a flow of whole blood in which the cell free layer is thick enough to reduce scattering of light from the refractometer light source. A numerical method is used to compensate for scattering artifacts. The numerical compensation method is based on the slope and width of a peak in the derivative curve of an angular spectrum image of the flowing sample produced by refractometry.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: May 12, 2020
    Assignee: Instrumentation Laboratory Company
    Inventors: Ethan Schonbrun, Lara Adib, Gert Blankenstein
  • Publication number: 20200103395
    Abstract: An apparatus for measuring hemolysis in a cartridge based automated blood analyzer is described. The apparatus allows hemolysis testing to be performed on a sample which is presented as a whole blood sample for other testing by the cartridge based automated blood analyzer. A disposable module is configured for optically analyzing one or more plasma analytes in a flow cell while red blood cells are acoustically separated from plasma in the flow cell.
    Type: Application
    Filed: October 2, 2019
    Publication date: April 2, 2020
    Applicant: Instrumentation Laboratory Company
    Inventors: Brian Joseph Bosy, Josef Kerimo
  • Patent number: 10585021
    Abstract: Described is an automated reagent mixing container for separately storing and automatically mixing together at least two stored reagent components.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: March 10, 2020
    Assignee: Instrumentation Laboratory Company
    Inventors: Gert Blankenstein, Hansong Zeng
  • Patent number: 10578605
    Abstract: An apparatus for measuring blood clotting time includes a blood clot detection instrument and a cuvette for use with the blood clot detection instrument. The cuvette includes a blood sample receptor-inlet; a channel arrangement including at least one test channel for performing a blood clotting time measurement, a sampling channel having at least one surface portion that is hydrophilic, communicating with the blood sample receptor-inlet and the at least one test channel, and a waste channel having at least one surface portion that is hydrophilic, communicating with the sampling channel; and a vent opening communicating with the sampling channel. The sampling channel, the vent opening and the waste channel, coact to automatically draw a requisite volume of a blood sample deposited at the blood receptor-inlet, into the sampling channel.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: March 3, 2020
    Assignee: Instrumentation Laboratory Company
    Inventors: Gregory M. Colella, Henry D. Huang, Anthony F. Kuklo, Jr., Dimitri Shishkin, Maria Figueroa, James A. Mawhirt
  • Patent number: 10564095
    Abstract: A sample cell apparatus for use in spectroscopic determination of an analyte in a body fluid sample includes a first plate member and a second plate member made from an optically clear material. A channel extending into a surface of the first plate member and an opposing surface of the second plate member houses a floating seal, which surrounds a fluid sample chamber. The fluid chamber is closed to define a repeatable optical path-length therethrough by urging the first plate member against the second plate member without compressing the floating seal between the first plate member and the second plate member. The seal channel is vented to prevent fluid pressure from flexing the first plate member or the second plate member. An actuator having an extended foot portion extends over the fluid chamber to help prevent flexing of the first plate member or the second plate member.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: February 18, 2020
    Assignee: Instrumentation Laboratory Company
    Inventors: Brian Joseph Bosy, Josef Kerimo
  • Publication number: 20200047183
    Abstract: Described is an automated reagent dispensing cap and methods of use in an automated clinical analyzer for introducing one or more reagent components housed in the reagent dispensing cap into a container enclosing another reagent component with which it is combined to achieve a reagent useful for diagnostic testing.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Applicant: Instrumentation Laboratory Company
    Inventors: Gert Blankenstein, Hansong Zeng
  • Patent number: 10456787
    Abstract: Described is an automated reagent dispensing cap and methods of use in an automated clinical analyzer for introducing one or more reagent components housed in the reagent dispensing cap into a container enclosing another reagent component with which it is combined to achieve a reagent useful for diagnostic testing.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: October 29, 2019
    Assignee: Instrumentation Laboratory Company
    Inventors: Gert Blankenstein, Hansong Zeng
  • Publication number: 20190293551
    Abstract: A sample cell apparatus for use in spectroscopic determination of an analyte in a body fluid sample includes a first plate member and a second plate member made from an optically clear material. A channel extending into a surface of the first plate member and an opposing surface of the second plate member houses a floating seal, which surrounds a fluid sample chamber. The fluid chamber is closed to define a repeatable optical path-length therethrough by urging the first plate member against the second plate member without compressing the floating seal between the first plate member and the second plate member. The seal channel is vented to prevent fluid pressure from flexing the first plate member or the second plate member. An actuator having an extended foot portion extends over the fluid chamber to help prevent flexing of the first plate member or the second plate member.
    Type: Application
    Filed: April 18, 2019
    Publication date: September 26, 2019
    Applicant: Instrumentation Laboratory Company
    Inventors: Brian Joseph Bosy, Josef Kerimo
  • Publication number: 20190257750
    Abstract: An optical system and method for quantifying total protein in whole blood or other multi-phase liquids and colloidal suspensions uses refractometry without preliminary steps such as cell separation or centrifugation. A refractometer is integrated with a flow cell to enable the refractive index of a flowing sample to be measured based on a substantially cell free boundary layer of the sample that is present under certain flow conditions. Dimensions of the flow cell are selected to produce a cell-free layer in a flow of whole blood in which the cell free layer is thick enough to reduce scattering of light from the refractometer light source. A numerical method is used to compensate for scattering artifacts. The numerical compensation method is based on the slope and width of a peak in the derivative curve of an angular spectrum image of the flowing sample produced by refractometry.
    Type: Application
    Filed: May 3, 2019
    Publication date: August 22, 2019
    Applicant: Instrumentation Laboratory Company
    Inventors: Ethan Schonbrun, Lara Adib, Gert Blankenstein
  • Publication number: 20190234931
    Abstract: Analyte content in a cell free portion of a body fluid, such as blood, is optically determined without centrifugation or other preliminary steps for separating the cell free portion from the body fluid. A channel is configured for containing a flowing sample of the body fluid along an optical boundary. The channel is configured so that a cell free layer of the fluid naturally forms along the boundary of the channel which coincides with the optical boundary. A light source is directed onto the optical boundary at an angle selected to generate total reflection from the boundary and to generate an evanescent field across the boundary in the cell free layer of fluid. A light detector is configured to detect absorption of the light in the evanescent field. The light source and light detector are matched to the wavelength range of an absorption peak of the analyte being detected.
    Type: Application
    Filed: April 12, 2019
    Publication date: August 1, 2019
    Applicant: Instrumentation Laboratory Company
    Inventors: Ethan Schonbrun, Gert Blankenstein, Josef Kerimo, Hansong Zeng
  • Patent number: 10324025
    Abstract: A sample cell apparatus for use in spectroscopic determination of an analyte in a body fluid sample includes a first plate member made from an optically clear material and a second plate member made from an optically clear material and opposing the first plate member. A channel extending into a surface of the first plate member and an opposing surface of the second plate member houses a floating seal. The floating seal surrounds a fluid chamber that retains a sample of body fluid for optical measurement. The fluid chamber may be opened for flushing by separating the first plate member from the second plate member. During measurements the fluid chamber is closed to define a repeatable optical path-length therethrough by urging the first plate member against the second plate member without compressing the floating seal between the first plate member and the second plate member.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: June 18, 2019
    Assignee: Instrumentation Laboratory Company
    Inventors: Brian Joseph Bosy, Josef Kerimo
  • Patent number: 10302559
    Abstract: An optical system and method for quantifying total protein in whole blood or other multi-phase liquids and colloidal suspensions uses refractometry without preliminary steps such as cell separation or centrifugation. A refractometer is integrated with a flow cell to enable the refractive index of a flowing sample to be measured based on a substantially cell free boundary layer of the sample that is present under certain flow conditions. Dimensions of the flow cell are selected to produce a cell-free layer in a flow of whole blood in which the cell free layer is thick enough to reduce scattering of light from the refractometer light source. A numerical method is used to compensate for scattering artifacts. The numerical compensation method is based on the slope and width of a peak in the derivative curve of an angular spectrum image of the flowing sample produced by refractometry.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: May 28, 2019
    Assignee: Instrumentation Laboratory Company
    Inventors: Ethan Schonbrun, Lara Adib, Gert Blankenstein
  • Patent number: 10288556
    Abstract: A sample cell apparatus for use in spectroscopic determination of an analyte in a body fluid sample includes a first plate member and a second plate member made from an optically clear material. A channel extending into a surface of the first plate member and an opposing surface of the second plate member houses a floating seal, which surrounds a fluid sample chamber. The fluid chamber is closed to define a repeatable optical path-length therethrough by urging the first plate member against the second plate member without compressing the floating seal between the first plate member and the second plate member. The seal channel is vented to prevent fluid pressure from flexing the first plate member or the second plate member. An actuator having an extended foot portion extends over the fluid chamber to help prevent flexing of the first plate member or the second plate member.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: May 14, 2019
    Assignee: Instrumentation Laboratory Company
    Inventors: Brian Joseph Bosy, Josef Kerimo
  • Patent number: 10288600
    Abstract: Analyte content in a cell free portion of a body fluid, such as blood, is optically determined without centrifugation or other preliminary steps for separating the cell free portion from the body fluid. A channel is configured for containing a flowing sample of the body fluid along an optical boundary. The channel is configured so that a cell free layer of the fluid naturally forms along the boundary of the channel which coincides with the optical boundary. A light source is directed onto the optical boundary at an angle selected to generate total reflection from the boundary and to generate an evanescent field across the boundary in the cell free layer of fluid. A light detector is configured to detect absorption of the light in the evanescent field. The light source and light detector are matched to the wavelength range of an absorption peak of the analyte being detected.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: May 14, 2019
    Assignee: Instrumentation Laboratory Company
    Inventors: Ethan Schonbrun, Gert Blankenstein, Josef Kerimo, Hansong Zeng
  • Publication number: 20190107486
    Abstract: An optical system and method for quantifying total protein in whole blood or other multi-phase liquids and colloidal suspensions uses refractometry without preliminary steps such as cell separation or centrifugation. A refractometer is integrated with a flow cell to enable the refractive index of a flowing sample to be measured based on a substantially cell free boundary layer of the sample that is present under certain flow conditions. Dimensions of the flow cell are selected to produce a cell-free layer in a flow of whole blood in which the cell free layer is thick enough to reduce scattering of light from the refractometer light source. A numerical method is used to compensate for scattering artifacts. The numerical compensation method is based on the slope and width of a peak in the derivative curve of an angular spectrum image of the flowing sample produced by refractometry.
    Type: Application
    Filed: December 6, 2018
    Publication date: April 11, 2019
    Applicant: Instrumentation Laboratory Company
    Inventors: Ethan Schonbrun, Lara Adib, Gert Blankenstein
  • Patent number: 10180419
    Abstract: An apparatus for measuring blood clotting time includes a blood clot detection instrument and a cuvette for use with the blood clot detection instrument. The cuvette includes a blood sample receptor-inlet; a channel arrangement including at least one test channel for performing a blood clotting time measurement, a sampling channel having at least one surface portion that is hydrophilic, communicating with the blood sample receptor-inlet and the at least one test channel, and a waste channel having at least one surface portion that is hydrophilic, communicating with the sampling channel; and a vent opening communicating with the sampling channel. The sampling channel, the vent opening and the waste channel, coact to automatically draw a requisite volume of a blood sample deposited at the blood receptor-inlet, into the sampling channel.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: January 15, 2019
    Assignee: Instrumentation Laboratory Company
    Inventors: Gregory M. Colella, Henry D. Huang, Anthony F. Kuklo, Jr., Dimitri Shishkin, Maria Figueroa, James A. Mawhirt