Abstract: A variety of wireless communication methods and apparatus for supporting reconfiguration of radio link control (RLC) parameters are disclosed. A radio resource control (RRC) reconfiguration message is generated that indicates that an RLC unit in a wireless transmit/receive unit (WTRU) or a universal terrestrial radio access network (UTRAN) should be reconfigured from supporting flexible size RLC protocol data units (PDUs) to supporting fixed size RLC PDUs. If an information element (IE) “one sided RLC re-establishment” is present in the RRC reconfiguration message, only a receiving side subassembly in the RLC unit is re-established. Otherwise, both the receiving side subassembly and a transmitting side subassembly in the RLC unit are re-established. Flexible size RLC PDUs may be discarded and a message indicating the discarded flexible size RLC PDUs may be transmitted. The flexible size RLC PDUs may be modified such that they correspond to a set of pre-defined sizes.
Type:
Grant
Filed:
March 4, 2014
Date of Patent:
October 20, 2015
Assignee:
InterDigital Technology Corporation
Inventors:
Stephen E. Terry, Diana Pani, Paul Marinier, Christopher Cave
Abstract: A protocol engine (PE) for processing data within a protocol stack in a wireless transmit/receive unit (WTRU) is disclosed. The protocol stack executes decision and control operations. The data processing and re-formatting which was performed in a conventional protocol stack is removed from the protocol stack and performed by the PE. The protocol stack issues a control word for processing data and the PE processes the data based on the control word. Preferably, the WTRU includes a shared memory and a second memory. The shared memory is used as a data block place holder to transfer the data amongst processing entities. For transmit processing, the PE retrieves source data from the second memory and processes the data while moving the data to the shared memory based on the control word. For receive processing, the PE retrieves received data from the shared memory and processes it while moving the data to the second memory.
Type:
Grant
Filed:
March 3, 2014
Date of Patent:
October 20, 2015
Assignee:
InterDigital Technology Corporaton
Inventors:
Edward L. Hepler, Robert G. Gazda, Alexander Reznik
Abstract: A method and apparatus for providing wireless communication services, (e.g., multimedia broadcast multicast services (MBMS)), are disclosed. A wireless transmit/receive unit (WTRU) detects a plurality of target cell evolved Node-Bs (eNodeBs) that neighbor a serving cell eNodeB. The WTRU evaluates cell reselection criteria and determines a neighboring target cell eNodeB to reselect. The WTRU receives and reads master information block (MIB) and system information messages of the neighboring target cell eNodeB, and confirms that the determined neighboring target cell eNodeB is not part of a multimedia broadcast single frequency network (MBSFN). The WTRU identifies the neighboring target cell eNodeB to the serving cell eNodeB.
Type:
Grant
Filed:
March 20, 2014
Date of Patent:
October 13, 2015
Assignee:
InterDigital Technology Corporation
Inventors:
Jin Wang, Shankar Somasundaram, Mohammed Sammour, Ulises Olvera-Hernandez, Rajat P. Mukherjee, James M. Miller
Abstract: Methods and apparatus for versatile medium access control (MAC) multiplexing in evolved HSPA are disclosed. More particularly, methods for downlink optimization of the enhanced high speed MAC (MAC-ehs) entity and uplink optimization of the MAC-i/is entity are disclosed. Apparatuses for using the optimized downlink and uplink MAC entities are also disclosed.
Type:
Grant
Filed:
May 2, 2013
Date of Patent:
October 13, 2015
Assignee:
InterDigital Technology Corporation
Inventors:
Paul Marinier, Diana Pani, Stephen E. Terry, Sudheer A. Grandhi
Abstract: A method and wireless transmit/receive unit (WTRU) for supporting enhanced uplink (EU) transmissions are disclosed. A WTRU is configured to provide hybrid automatic repeat request (H-ARQ) processes for supporting transmission over an enhanced uplink (EU) channel, to receive configuration information, wherein the configuration information indicates which H-ARQ processes are associated with a particular MAC-d flow, to allocate an H-ARQ process for transmission of data from the MAC-d flow, wherein the allocated H-ARQ process is from one of the associated H-ARQ processes, and to transmit data from the MAC-d flow over the EU channel using the allocated H-ARQ process.
Abstract: A method and apparatus for combining space-frequency block coding (SFBC) and frequency shift transmit diversity (FSTD) in a multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system.
Type:
Grant
Filed:
February 9, 2012
Date of Patent:
October 13, 2015
Assignee:
InterDigital Technology Corporation
Inventors:
Jaeyoung Kwak, Chang-Soo Koo, Robert Lind Olesen, Aykut Bultan, Fatih Ozluturk
Abstract: A method and apparatus for performing Joint Randomness Not Shared by Others (JRNSO) is disclosed. In one embodiment, JRNSO is determined in Frequency Division Duplex (FDD) using a baseband signal loop back and private pilots. In another embodiment, JRNSO is determined in Time Division Duplex (TDD) using a baseband signal loop back and combinations of private pilots, private gain functions and Kalman filtering directional processing. In one example, the FDD and TDD JRSNO embodiments are performed in Single-Input-Single-Output (SISO) and Single-Input-Multiple-Output (SIMO) communications. In other examples, the FDD and TDD embodiments are performed in Multiple-Input-Multiple-Output (MIMO) and Multiple-Input-Single-Output (MISO) communications. JRNSO is determined by reducing MIMO and MISO communications to SISO or SIMO communications. JRNSO is also determined using determinants of MIMO channel products. Channel restrictions are removed by exploiting symmetric properties of matrix products.
Type:
Grant
Filed:
February 14, 2013
Date of Patent:
October 6, 2015
Assignee:
InterDigital Technology Corporation
Inventors:
Steven J. Goldberg, Yogendra C. Shah, Alexander Reznik
Abstract: A wireless communication system and method of implementing an evolved system attachment procedure are disclosed. The system includes a first core network and a second core network which is evolved from the first core network. A wireless transmit/receive unit (WTRU) sends an attach request message to the second core network. The second core network activates a packet data protocol (PDP) context and sends an attach accept message to the WTRU. The attach accept message includes information regarding the PDP context. The second core network constructs a session and mobility management (SMM) context for session management (SM) and mobility management (MM) for the WTRU.
Abstract: A system and method which permit the RNC to control purging of data buffered in the Node B. The RNC monitors for a triggering event, which initiates the purging process. The RNC then informs the Node B of the need to purge data by transmitting a purge command, which prompts the Node B to delete at least a portion of buffered data. The purge command can include instructions for the Node B to purge all data for a particular UE, data in one or several user priority transmission queues or in one or more logical channels in the Node B, depending upon the particular data purge triggering event realized in the RNC.
Type:
Grant
Filed:
September 19, 2014
Date of Patent:
October 6, 2015
Assignee:
InterDigital Technology Corporation
Inventors:
Stephen E. Terry, Yi-Ju Chao, James M. Miller
Abstract: A method for downlink power control for use in a spread spectrum time division communication system having time slots for communication, implemented in a user equipment, includes receiving data in a command per coded composite transport channel (CCTrCH) transmitted over a plurality of time slots. An interference power for each time slot of the plurality of time slots is measured and a single power command for the entire CCTrCH is transmitted in response to a signal to interference ratio of the received CCTrCH and the measured interference power measurement for each time slot. A subsequent data is received in the CCTrCH communication having a transmission power level for each downlink communication time slot set individually in response to the interference power measurement for that time slot and the single power command for the entire CCTrCH.
Type:
Grant
Filed:
October 14, 2013
Date of Patent:
September 22, 2015
Assignee:
InterDigital Technology Corporation
Inventors:
Eldad M. Zeira, Stephen E. Terry, Ariela Zeira
Abstract: A user equipment (UE) includes circuitry configured to receive control information on a downlink control channel from a base station. The control information indicates an allocation of an uplink channel and the control information is sent in response to the base station determining that the UE is to send an adaptive modulation and coding report. The circuitry is further configured in response to the control information to transmit a communication in the allocated uplink channel in a time interval including at least one time slot. The communication includes an adaptive modulation and coding report, and a transmission power level of the communication is derived from the control information and a pathloss measured by the UE.
Type:
Grant
Filed:
March 13, 2014
Date of Patent:
September 15, 2015
Assignee:
InterDigital Technology Corporation
Inventors:
Stephen E. Terry, Stephen G. Dick, James M. Miller, Ariela Zeira, Eldad M. Zeira
Abstract: A method and apparatus is used for generating a perfectly random secret key between two or more transceivers in a wireless communication network. In a point-to-point system, both transceivers produce an estimate of the channel impulse response (CIR) based on the received radio signal. The CIR estimation is synchronized and may include error correction and detection. A long secret key of bits is generated from a digitized version of the CIR estimate, from which a perfectly secret encryption key is derived by privacy amplification.
Type:
Grant
Filed:
July 12, 2012
Date of Patent:
September 8, 2015
Assignee:
InterDigital Technology Corporation
Inventors:
Alexander Reznik, Akinlolu Oloruntosi Kumoluyi, Guodong Zhang, Prabhakar R. Chitrapu, Gregory S. Sternberg, Yogendra C. Shah, Alain Charles Louis Briancon, Chunxuan Ye
Abstract: A method and apparatus for managing radio resources in one or more wireless communication networks. At least one radio resource manager (RRM) is provided within a network node, or as an independent entity. The RRM monitors performance on wireless communication links of the network(s) and interacts with nodes associated with those links to change the configuration on a particular wireless communication link if its performance (i.e., quality) falls below an established threshold. Information regarding current resource usage of the network is sent to the RRM by the nodes. Each of the nodes may send a quality report to the RRM including wireless communication link quality measurements and performance statistics. Alternatively, the RRM may perform the wireless communication link quality measurements. The RRM facilitates the broadcasting of information regarding current resource usage of one network to other networks to avoid collisions and interference.
Type:
Grant
Filed:
May 21, 2014
Date of Patent:
September 1, 2015
Assignee:
InterDigital Technology Corporation
Inventors:
Juan Carlos Zuniga, Marian Rudolf, Shamim Akbar Rahman
Abstract: In orthogonal frequency division multiplexing (OFDM) multiple-input multiple-output (MIMO) systems, a wireless transmit/receive unit (WTRU) selects a random access channel (RACH) and a phase for a constant amplitude zero auto correlation (CAZAC) sequence for RACH transmission. The WTRU then transmits a RACH transmission to a Node B via the selected RACH. Once the RACH transmission is detected, the Node B sends an acknowledgement (ACK) to the WTRU over an ACK channel. The Node B may transmit the ACK on a shared channel. The WTRU may ramp up transmit power while the RACH transmission is transmitted, or steps up transmit power of a subsequent RACH transmission. The RACH transmission and data transmission may be either time multiplexed or frequency multiplexed. A plurality of RACHs may be defined and one of the defined RACHs may be selected randomly or based on predetermined criteria.
Abstract: A method for using a code division multiple access (CDMA) subscriber unit to transmit a communication to a base station at a first data rate using at least one communication channel, determine an adjusted data rate desired for support of the communication, and transmit the communication to the base station over a second channel at a second data rate, wherein the first data rate is different than the second data rate.
Abstract: A method and apparatus may be used for assigning groups of stations in wireless communications to one or more groups. Groups may be assigned by an access point (AP) based on information received from a station (STA). Group information may be signaled to each station and a group identifier may be indicated in a frame. The group information may be applied to a performance enhancement, for example power savings for the station, wherein the station enters a power saving mode on a condition that the station determines that it is not a member of the group.
Type:
Application
Filed:
April 13, 2015
Publication date:
August 6, 2015
Applicant:
InterDigital Technology Corporation
Inventors:
Mohammed Sammour, Sudheer A. Grandhi, Arty Chandra
Abstract: A method and apparatus for implementing data security and automatic repeat request (ARQ) in a wireless communication system are disclosed. Cipher entities are included in a wireless transmit/receive unit (WTRU) and an access gateway (aGW), and outer ARQ, (or radio link control (RLC)), entities are included in the WTRU and an evolved Node-B (eNode-B). Each cipher entity is located on top of an outer ARQ entity. The cipher entities cipher and decipher a data block by using a generic sequence number (SN) assigned to the data block. The outer ARQ entities may segment the ciphered data block to multiple packet data units (PDUs), may concatenate multiple ciphered data blocks to a PDU, or may generate one PDU from one data block. The outer ARQ entities may segment or re-segment the PDU when a transmission failure occurs.
Type:
Application
Filed:
April 14, 2015
Publication date:
August 6, 2015
Applicant:
InterDigital Technology Corporation
Inventors:
Peter S. Wang, Stephen E. Terry, Ulises Olvera-Hernandez
Abstract: A CDMA communication system includes a signal processor which encodes voice and nonvoice signals into data at various rates, e.g. data rates of 8 kbps, 16 kbps, 32 kbps, or 64 kbps as I and Q signals. The signal processor selects a specific data rate depending upon the type of signal, or in response to a set data rate. When the signal is received and demodulated, the baseband signal is at the chip level. Both the I and Q components of the signal are despread using the conjugate of the pn sequence used during spreading, returning the signal to the symbol level. Carrier offset correction is performed at the symbol level. A lower overall processing speed is therefore required.
Abstract: A method and apparatus are used for providing assistance data to wireless transmit/receive units (WTRU)s. The assistance data may include information regarding neighboring access points (AP)s. The assistance data may be transmitted to WTRUs using multicast, broadcast, and/or point-to-point signaling. The assistance data may be used to facilitate ring and handover of WTRUs from one AP to another.
Type:
Application
Filed:
April 10, 2015
Publication date:
July 30, 2015
Applicant:
InterDigital Technology Corporation
Inventors:
Marian Rudolf, Teresa J. Hunkeler, Shamim A. Rahman, Stephen G. Dick
Abstract: A method and apparatus for selecting one of a plurality of multi-band access points (APs) to associate with a multi-band wireless transmit/receive unit (WTRU) are disclosed. The multi-band APs broadcast frequency band information regarding multiple frequency bands on which the multi-band AP is configured to operate. The multi-band WTRU selects a particular multi-band AP to associate with and a frequency band to use to communicate with the selected multi-band AP based on the frequency band information. If the multi-band WTRU receives frequency band information from the selected multi-band AP which indicates that a characteristic, (e.g., throughput, path loss, load, capacity, backhaul), of the selected frequency band is unacceptable, the multi-band WTRU determines whether to disassociate with the selected multi-band AP or to continue to associate with the selected multi-band AP via a different frequency band.