Patents Assigned to International Superconductivity Technology Center
  • Patent number: 5707441
    Abstract: In order to prepare a large yttrium or lanthanoid based oxide superconductor crystal of higher quality, a method and an apparatus which can stably control the shape of a pulled crystal and stably maintain growth of the crystal from a melt are provided. A crystal of an oxide having a structure of RBa.sub.2 Cu.sub.3 O.sub.7-X (R: yttrium or lanthanoid element, 0.ltoreq.X.ltoreq.1) is pulled from a raw material melt which is stored in a crucible by a rotary crystal pulling shaft. During such pulling, a position of the surface of the raw material melt is measured with time to obtain a lowering speed of the surface in a direction substantially parallel to the crystal pulling direction, for adjusting the lifting speed of the crystal pulling shaft by this lowering speed.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: January 13, 1998
    Assignees: Sumitomo Electric Industries, Ltd., International Superconductivity Technology Center
    Inventors: Yasuo Namikawa, Yuh Shiohara, Shoji Tanaka
  • Patent number: 5705457
    Abstract: The present invention provides an oxide superconductor which is expressed in the composition formula(Pb.sub.1-x-y M.sub.x (A1).sub.y)(A2).sub.2 (A3).sub.n-1 (Cu).sub.n (O).sub.2n+3+z(wherein 0.ltoreq.0.6, 0.ltoreq.y.ltoreq.0.6, x+y.ltoreq.0.6, n denotes integers of 1 or more, -0.6.ltoreq.z.ltoreq.0.5, M denotes Cu or Cd, and A1, A2 and A3 denote at least one element of Ba, Sr, and Ca, respectively) and which has a crystal structure stacking rock salt structure based portions and infinite layer structure portions, wherein the rock salt structure based portion has a structure that an atoms layer having 0.5-1.5 oxygen atoms, in case the total atoms number of Pb, M and A1 is one, and an atoms layer having one or less oxygen atoms per one A2 atom, are stacked and the infinite layer structure portion has a structure that an atoms layer having 2 oxygen atoms per one Cu atom and an atoms layer of A3 atoms only, are stacked.
    Type: Grant
    Filed: September 8, 1995
    Date of Patent: January 6, 1998
    Assignees: The Furukawa Electric Co., Ltd., Matsushita Electric Industrial Co., Ltd., International Superconductivity Technology Center
    Inventors: Toshiyuki Tamura, Seiji Adachi, Xiao-Jing Wu, Hisao Yamauchi
  • Patent number: 5679625
    Abstract: A method of making a superconducting thin film of a Y--Ba--Cu--O series material by using a diode parallel plate type sputtering apparatus including a vacuum chamber, a substrate disposed within the vacuum chamber and having a substantially flat surface on which the superconducting thin film is to be formed, and a plate-shaped target functioning as a cathode and disposed within the vacuum chamber to parallelly face to the flat surface of the substrate, the target being made of the same material as the superconducting thin film, a plasma gas being introduced into the vacuum chamber, and a voltage being applied between the cathode and the substrate, wherein the method comprises the steps of applying a high frequency voltage having a frequency higher than 40 MHz between the cathode and the substrate to generate plasma of the introduced gas, superimposing a DC voltage (V) on the high frequency voltage in a polarity that the cathode becomes negative, and setting the DC voltage at a value where the DC voltage is su
    Type: Grant
    Filed: November 22, 1995
    Date of Patent: October 21, 1997
    Assignees: Nippon Steel Corporation, International Superconductivity Technology Center, Mitsubish Electric Corporation, Hokkaido Electric Power Co., Inc.
    Inventors: Wataru Ito, Tadataka Morishita, Norio Homma, Yukihisa Yoshida
  • Patent number: 5674815
    Abstract: An oxide superconductor composed of Cu, O and M (M is Ba, Sr and/or Ca) and including alternately arranged at least one rock-salt structure section and at least one infinite layer structure section, wherein the rock-salt structure section consists of two atomic layers each consisting of O and M and each having an atomic ratio O/M of 1 or less, and the infinite layer structure section consists of alternately arranged, first and second atomic layers. Each of the first atomic layers consists of O and Cu and has an atomic ratio O/Cu of 2, while each of the second atomic layers consists of the element M. The infinite layer structure section may consist of only one first atomic layer.
    Type: Grant
    Filed: March 6, 1996
    Date of Patent: October 7, 1997
    Assignees: International Superconductivity Technology Center, Matsushita Electric Industrial Co., Ltd.
    Inventors: Seiji Adachi, Hisao Yamauchi, Shoji Tanaka, Nobuo Mouri
  • Patent number: 5670457
    Abstract: An oxide superconductor composed of Cu, O and at least one of Ba, Sr and Ca and including alternately arranged at least one oxygen-deficient perovskite structure section and at least one infinite layer structure section, wherein the perovskite structure section consists of two first atomic layers and a second atomic layer sandwiched between the first layers, and wherein the infinite layer structure section consists of alternately arranged, third and fourth atomic layers. Each of the first layers consists of O and an element M.sup.1 selected from Ba, Sr and Ca and has an atomic ratio O/M.sup.1 of 1 or less, while the second layer consists of O and Cu and has an atomic ratio O/Cu of 2 or less. Each of the third layers consists of O and Cu and has an atomic ratio O/Cu of 2, while each of the fourth layers consists of an element M.sup.2 selected from Ba, Sr and Ca. A superconductor having a superconducting critical temperature of over 100 K. may be produced by heat treatment at 800.degree.-1,200.degree.C.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: September 23, 1997
    Assignees: International Superconductivity Technology Center, Matsushita Electric Industrial Co., Ltd.
    Inventors: Seiji Adachi, Changqin Jin, Xiao-Jing Wu, Hisao Yamauchi, Shoji Tanaka
  • Patent number: 5665682
    Abstract: An oxide superconductor capable of realizing a high critical current density and its manufacturing method requiring only a low temperature heat treatment. An oxide superconductor has a superconductive layer with a composition of RE.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x, where RE stands for any one of rare earth elements including Y, Eu, Gd, Dy, Ho, Er, and Yb, which is formed on the substrate by RE.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x phase and CuO phase resulting from a decomposition of RE.sub.1 Ba.sub.2 Cu.sub.4 O.sub.8 phase, in which the CuO phase and micro-defects caused by the decomposition function as pinning centers. This superconductive layer is formed by applying a solution containing organic compounds of a plurality of metallic elements for constituting the oxide superconductive layer; calcining the substrate applied with the solution to obtain a calcined body in which the organic compounds contained in the solution are thermally decomposed; heating the calcined body to produce RE.sub.1 Ba.sub.2 Cu.sub.
    Type: Grant
    Filed: August 14, 1995
    Date of Patent: September 9, 1997
    Assignees: International Superconductivity Technology Center, The Kansai Electric Power Co., Inc., Fujikura Ltd.
    Inventors: Osamu Okamura, Atsushi Kume, Yuh Shiohara
  • Patent number: 5652199
    Abstract: A method of manufacturing an oxide superconductor, including the steps of mixing oxide materials of the metals contained in an oxide superconductor represented by HgBa.sub.2 Ca.sub.2 Cu.sub.3 O.sub.8+y to prepare a powder mixture of the composition noted above, molding the powder mixture to prepare a molded body of a desired shape, and applying a heat treatment to the molded body within a hermetic container at a temperature sufficient for bringing about a solid phase reaction of the oxide materials for at least 20 hours.
    Type: Grant
    Filed: December 21, 1994
    Date of Patent: July 29, 1997
    Assignees: International Superconductivity Technology Center, Tohoku Electric Power Company, Inc., Sumitomo Electric Industries, Ltd.
    Inventors: Kazuyuki Isawa, Ayako Yamamoto, Seiji Adachi, Makoto Itoh, Hisao Yamauchi
  • Patent number: 5650376
    Abstract: A superconducting film is disclosed which has the following composition:(Nd, Ba).sub.3 Cu.sub.3 O.sub.7-dwhere d is a number greater than 0 but smaller than 0.5. The superconducting film has the same crystal structure as that of YBa.sub.2 Cu.sub.3 O.sub.7 except that part of the Nd sites and/or part of the Ba sites are occupied by Ba and Nd atoms, respectively.
    Type: Grant
    Filed: November 6, 1995
    Date of Patent: July 22, 1997
    Assignee: International Superconductivity Technology Center
    Inventors: Massoud Badaye, Tadataka Morishita, Youichi Enomoto, Shoji Tanaka
  • Patent number: 5635716
    Abstract: The atoms constituting a surface of a solid sample are identified by first forming, on the surface, island-like deposits of a substance capable of generating fluorescent X-rays upon being energized by an electron beam. The deposits are then energized with the electron beam so that fluorescent X-rays are emitted therefrom and reflected on the surface. From the critical angle for total reflection of the fluorescent X-rays reflected on that portion of the surface of the sample on which no deposits are present, the atoms constituting the surface may be determined. An apparatus for carrying out the above method is also disclosed which is a modification of the conventional RHEED/TRAXS device.
    Type: Grant
    Filed: March 13, 1996
    Date of Patent: June 3, 1997
    Assignee: International Superconductivity Technology Center
    Inventors: Ziyuan Liu, Tadataka Morishita
  • Patent number: 5632811
    Abstract: In order to stably retain an oxide-based melt consisting essentially of yttrium or a lanthanoid element, barium, copper and oxygen at a prescribed temperature with no impurity contamination thereby preparing a large oxide crystal of high quality from the melt, an oxide melt consisting essentially of yttrium or a lanthanoid element, barium, copper and oxygen is stored in a first crucible, which in turn is held in a second crucible. The first crucible is made of a material which is an oxide of at least one element forming the melt having a melting point higher by at least 10.degree. C. than a melt retention temperature and causing no structural phase transition up to a temperature higher by 10.degree. C. than the aforementioned prescribed temperature, with solubility of not more than 5 atomic percent with respect to the melt in a temperature range from the room temperature to a temperature higher by 10.degree. C. than the melt retention temperature.
    Type: Grant
    Filed: April 12, 1995
    Date of Patent: May 27, 1997
    Assignees: Sumitomo Electric Industries, Ltd., International Superconductivity Technology Center
    Inventors: Yasuo Namikawa, Yasuji Yamada, Satoshi Koyama, Yuh Shiohara, Shoji Tanaka
  • Patent number: 5627142
    Abstract: A composite material is disclosed which includes a substrate, an oriented film provided on a surface of the substrate and formed of a crystal of a Y123 metal oxide of the formula LnBa.sub.2 Cu.sub.3 O.sub.y wherein Ln stands for Y or an element belonging to the lanthanoid and y is a number of 6-7, and a layer of a Y123 metal oxide of the formula LnBa.sub.2 Cu.sub.3 O.sub.y wherein Ln stands for Y or an element belonging to the lanthanoid and y is a number of 6-7 formed on the oriented film.
    Type: Grant
    Filed: July 25, 1994
    Date of Patent: May 6, 1997
    Assignees: International Superconductivity Technology Center, Hitachi Cable, Ltd., Hokkaido Electric Power Co., Inc., Kyushu Electric Power Co., Inc., Kansai Electric Power Co., Inc., Fujikura, Ltd.
    Inventors: Yasuji Yamada, Masaru Nakamura, Noriyuki Tatsumi, Jiro Tsujino, Kanshi Ohtsu, Yasuo Kanamori, Minoru Tagami, Atsushi Kume, Yuh Shiohara, Shoji Tanaka
  • Patent number: 5602079
    Abstract: A superconducting device having a superconducting film measures a characteristic such as its resonance frequency while in an environment having a temperature that is less than or equal to its superconducting transition temperature. A laser then thermally etches the superconducting film on the basis of said measurement in the environment having a temperature that is less than or equal to a superconducting transition temperature.
    Type: Grant
    Filed: June 6, 1994
    Date of Patent: February 11, 1997
    Assignees: International Superconductivity Technology Center, Kawasaki Jukogyo Kabushiki Kaisha, NEC Corporation, Mitsubishi Materials Corporation
    Inventors: Tsuyoshi Takenaka, Katsumi Suzuki, Shuichi Fujino, Youichi Enomoto
  • Patent number: 5602081
    Abstract: A method of preparing a crystal of a Y-series 123 metal oxide is disclosed, in which a substrate is immersed in a liquid phase which comprises components constituting the metal oxide. The liquid phase contains a solid phase located at a position different from the position at which the substrate contacts the liquid phase. The solid phase provides the liquid phase with solutes which constitute the Y-series 123 metal oxide so that the solutes are transported to the position at which the substrate and the liquid phase contact, thereby permitting the Y-series 123 metal oxide to grow on the substrate as primary crystals.
    Type: Grant
    Filed: May 9, 1994
    Date of Patent: February 11, 1997
    Assignees: International Superconductivity Technology Center, Mitsubishi Cable Industries
    Inventors: Masaru Nakamura, Yasuji Yamada, Minoru Tagami, Yuh Shiohara, Shoji Tanaka
  • Patent number: 5599775
    Abstract: Provided is an Hg--Ba--Ca--Cu--O oxide superconductor having a high superconductivity transition temperature Tc and a method which can prepare the same in excellent reproducibility. This oxide superconductor consists essentially of Hg, Ba, Ca, Cu and O, and is expressed in a chemical formula (Hg.sub.1-X Cu.sub.X)Ba.sub.2 Ca.sub.2 Cu.sub.3 O.sub.y, wherein X=0.05 to 0.7 and Y=8 to 8.75. A method of preparing the oxide superconductor comprises a step of mixing raw materials of Hg, Ba, Ca and Cu with each other so that (Hg+Ba):Ca:Cu =b:1:C and Hg:Ba=(1-a):a, wherein 0.625.ltoreq.a.ltoreq.0.714, 1.ltoreq.b.ltoreq.3 and 1.667.ltoreq.c.ltoreq.3.444, in mole ratio, and compression-molding the mixture, and a step of heat treating a compact obtained by the compression molding. This oxide superconductor has a superconductivity transition temperature Tc of 134 K, which is the highest at present.
    Type: Grant
    Filed: January 26, 1996
    Date of Patent: February 4, 1997
    Assignees: Sumitomo Electric Industries, Ltd., Tohoku Electric Power Co., Inc., Matsushita Electric Industrial Co., Ltd., International Superconductivity Technology Center
    Inventors: Makoto Itoh, Ayako Yamamoto, Kazuyuki Isawa, Seiji Adachi, Hisao Yamauchi, Shoji Tanaka
  • Patent number: 5578553
    Abstract: In the production of a 124-type or 123-type superconductor by a sol-gel method using alkoxides of respective metals, the use of a compound wherein a sec-butoxy group and a hydroxy group are coordinated with a copper atom gives a superconductor composed of flat particles having a broad C plane. The dimensional ratio defined by l/d is at least 6.7 in the case of the 124-type or is at least 8.4 in the case of the 123-type. It shows a superconducting property at a liquid nitrogen temperature. This superconductor shows a higher critical current density than one obtained by a sintering method.
    Type: Grant
    Filed: November 28, 1994
    Date of Patent: November 26, 1996
    Assignees: Kyocera Corporation, International Superconductivity Technology Center, Sanyo Electric Co., Ltd.
    Inventors: Shinichi Koriyama, Takaaki Ikemachi, Hisao Yamauchi
  • Patent number: 5571778
    Abstract: A superconductor junction material is disclosed which comprises a substrate of a single crystal, and at least flux flow element, and optionally at least one Josephson junction element, provided on the surface, each of the flux flow and Josephson junction elements being formed of a superconducting oxide layer having a weak link. The flux flow and Josephson junction elements are prepared by vacuum deposition at different oxygen partial pressures.
    Type: Grant
    Filed: March 30, 1995
    Date of Patent: November 5, 1996
    Assignees: Superconductivity Research Laboratory of International Superconductivity Technology Center, Sharp Corporation
    Inventors: Manabu Fujimoto, Katsumi Suzuki, Youichi Enomoto, Shoji Tanaka
  • Patent number: 5563117
    Abstract: In the production of a 124-type or 123-type superconductor by a sol-gel method using alkoxides of respective metals, the use of a compound wherein a secbutoxy group and a hydroxy group are coordinated with a copper atom gives a superconductor composed of flat particles having a broad C plane. The dimensional ratio defined by l/d is at least 6.7 in the case of the 124-type or is at least 8.4 in the case of the 123-type. It shows a superconducting property at a liquid nitrogen temperature. This superconductor shows a higher critical current density than one obtained by a sintering method.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: October 8, 1996
    Assignees: Kyocera Corporation, International Superconductivity Technology Center, Sanyo Electric Co., Ltd.
    Inventors: Shinichi Koriyama, Takaaki Ikemachi, Hisao Yamauchi
  • Patent number: 5543768
    Abstract: A composite magnet comprising a core of R-Ba-Cu-O type bulk superconductor (R denotes rare-earth elements) made by melt process, enclosed around it with normal conductive or superconductive coil, or a composite magnet including a center of normal conductive or superconductive coil, enclosed around it with ring-shaped R-Ba-Cu-O type bulk superconductor (R denotes rare-earth elements) made by melt process is disclosed, which allows easy control of generating magnetic field and gives a relatively strong magnetic field even at a temperature as high as that of liquid nitrogen.
    Type: Grant
    Filed: October 7, 1994
    Date of Patent: August 6, 1996
    Assignee: International Superconductivity Technology Center
    Inventors: Masato Murakami, Hiroshi Takaichi, Shoji Tanaka, Naomichi Sakai
  • Patent number: 5536704
    Abstract: A composite material comprising a bulky substrate of a Y-series 123 metal oxide crystal, and at least one layer provided on a surface of the substrate and formed of a crystal of a Y-series 123 metal oxide. The substrate may be produced by immersing a seed material in a liquid phase which comprises components constituting the metal oxide. The liquid phase contains a solid phase located at a position different from the position at which the seed material contacts the liquid phase. The solid phase provides the liquid phase with solutes which constitute the Y-series 123 metal oxide so that the solutes are transported to the position at which the seed material and the liquid phase contact, thereby permitting the Y-series 123 metal oxide to grow on the seed material as primary crystals and to obtain the bulky substrate. The layer of a Y-series 123 metal oxide may be formed on the substrate by a sputtering method, a vacuum deposition method, a laser abrasion method, a CVD method or a liquid phase epitaxy method.
    Type: Grant
    Filed: May 9, 1994
    Date of Patent: July 16, 1996
    Assignees: International Superconductivity Technology Center, Mitsubishi Cable Industries, Ltd., Kyocera Corporation, Japan Energy Corporation
    Inventors: Yasuji Yamada, Minoru Tagami, Masaru Nakamura, Hideki Sakai, Koichi Uehara, Yuh Shiohara, Shoji Tanaka
  • Patent number: 5534715
    Abstract: A Josephson junction is disclosed which includes a substrate of a single crystal having a substantially flat surface, a wiring pattern of an oxide superconductor formed on the flat surface of the substrate, and an altered region formed having a width of 300 nm or less and formed in the wiring pattern to intersect the wiring pattern, the crystal orientations of the wiring pattern on both sides of the altered region being equal to each other.
    Type: Grant
    Filed: November 8, 1993
    Date of Patent: July 9, 1996
    Assignees: International Superconductivity Technology Center, NEC Corporation
    Inventors: Christian Neumann, Katsumi Suzuki, Youichi Enomoto, Shoji Tanaka