Patents Assigned to Iowa State University Research Foundation
  • Patent number: 10874737
    Abstract: Immunogenic compositions and methods of using them include a biodegradable or bioerodible polyanhydride nanoparticle comprising 1,8-bis(p-carboxyphenoxy)-3,6-dioxaoctane (CPTEG) and 1,6-bis(p-carboxyphenoxy)hexane (CPH) copolymers, an immunogenic protein of an Influenza Virus and an adjuvant entrapped within an interior of the nanoparticle, and an excipient. The immunogenic composition may be administered to a subject to confer both local and systemic immunity to the Influenza Virus.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: December 29, 2020
    Assignees: Iowa State University Research Foundation, Inc., University of Iowa Research Foundation
    Inventors: Balaji Narasimhan, Kathleen A. Ross, Kevin L. Legge, Thomas J. Waldschmidt
  • Patent number: 10876210
    Abstract: An apparatus, method, and system for post-processing a printed graphene ink pattern or other deposition on a substrate. A pulsed UV laser is tunable between various energy densities to selectively modify the printed ink or deposition in electrical or physical properties. In one example, radical improvements in electrical conductivity are achieved. In another example, controlled transformation from essentially 2D printed or deposited graphene to surface topology of 3D nanostructures are achieved. The 3D structures are beneficial in such applications as electrochemical sensors of different types and characteristics. In another example, hydrophobicity of the printed or deposited graphene can be manipulated starting from a hydrophilic to super hydrophobic surface.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: December 29, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Jonathan Claussen, Suprem Das
  • Patent number: 10875339
    Abstract: Methods, systems, and compositions to produce high resolution, highly scalable patterns on a variety of substrates. A high resolution sacrificial negative of the desired pattern in inkjet printed on the substrate with an inkjet printable ink. A viscous solution is coated or deposited over the negative pattern and substrate. The solution is stabilized such as by drying and adheres to the substrate. The sacrificial negative is removed, leaving the dried solution in the high resolution form factor defined by the removed negative. This allows the solution to be formulated without regard to meeting inkjet printing requirements but results in a high resolution final positive pattern on the substrate.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: December 29, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Jonathan Claussen, John Hondred, Loreen Stromberg
  • Patent number: 10872734
    Abstract: A method of synthesizing a mixed-halide perovskite is disclosed herein. The method includes the steps of mixing a first single-halide perovskite and a second single-halide perovskite to form a solid phase mixture and heating the solid phase mixture at a temperature below a first decomposition temperature of the first single-halide perovskite and below a second decomposition temperature of the second single-halide perovskite for a time sufficient to form the mixed-halide perovskite. During the mixing, the first and second single-halide perovskite are both in the solid phase. A mixed-halide perovskite made according to the method is also disclosed herein. The mixed-halide perovskite is free of amorphous and/or semicrystalline phases. The mixed-halide perovskite can be utilized in a photovoltaic cell in a solar panel.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: December 22, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Javier Vela-Becerra, Bryan A. Rosales
  • Patent number: 10859557
    Abstract: An apparatus, method, and system for on-the-go soil nitrate level sensing, and optionally using the sensing to inform or instruct nitrogen fertilizer application across the field. In one form, the apparatus includes a soil sensing tool which carries a diamond ATR cell in combination with an FTIR field ruggedized spectrometer. The optical surface of the diamond ATR cell can be adjusted in pitch and depth to the soil. A processor is programmed to manipulate acquired spectra to derive a prediction of nitrate level for a given soil position in the field. This can be used to modulate a fertilizer applicator operation or coupled with georeference data collected simultaneously to generate a map of soil nitrate levels for the field, which can be used as a prescription for nitrogen fertilizer application.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: December 8, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: David Laird, Natalia Rogovska, Chien-Ping Chiou
  • Patent number: 10851046
    Abstract: This invention relates to a wax composition comprising a plurality of fatty acid amide compounds having the Formula (I): where R1, R2, n1, n2, m1, and m2 are as described herein. This invention also relates to a wax composition comprising: a) one or more fatty acid amide compounds having the Formula (II): and b) one or more fatty acid amide compounds having the Formula (III): where R1, R2, n1, and n2 are as described herein. This invention also relates to a fatty acid amide compound having the Formula (I) and a process for preparing a compound of Formula (I).
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: December 1, 2020
    Assignee: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Tong Wang, Tao Fei
  • Patent number: 10851446
    Abstract: Magnet microstructure manipulation in the solid state by controlled application of a sufficient stress in a direction during high temperature annealing in a single-phase region of heat-treatable magnet alloys, e.g., alnico-type magnets is followed by magnetic annealing and draw annealing to improve coercivity and saturation magnetization properties. The solid-state process can be termed highly controlled abnormal grain growth (hereafter AGG) and will make aligned sintered anisotropic magnets that meet or exceed the magnetic properties of cast versions of the same alloy types.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: December 1, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Emma Marie Hamilton White, Matthew J. Kramer, Aaron G. Kassen, Kevin W. Dennis
  • Patent number: 10851037
    Abstract: The present invention is directed to a pyrolysis method. The method involves providing a biomass and subjecting the biomass, in a reactor operating under conditions of parasitic heat loss of less than 1% of the biomass' chemical energy content, to partial oxidation where, during steady state operation of the reactor, oxygen is provided to the reactor in sufficient quantity to achieve an equivalence ratio of 0.06 to 0.15 to release sufficient energy to support endothermic pyrolysis reactions and produce condensable organic compounds as the major portion of the pyrolysis products.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 1, 2020
    Assignee: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Robert C. Brown, Joseph P. Polin, Lysle E. Whitmer
  • Patent number: 10844031
    Abstract: The present application relates to a process for preparation of a compound of Formula (I) and Formula (IV): wherein is as described herein; and wherein and R are as described herein.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: November 24, 2020
    Assignee: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Aaron David Sadow, Zachary Benjamin Weinstein, George A. Kraus
  • Patent number: 10844166
    Abstract: The present invention relates to a thermoplastic copolymer, block copolymer, and statistical copolymer comprising plural acrylated polyol monomeric units having different degrees of acrylation of hydroxyl groups. The acrylated polyol monomeric units have an average degree of acrylation greater than 1 and less than the number of the hydroxyl groups of the polyol. The present invention also relates to a method of making the thermoplastic copolymer, block copolymer, and statistical copolymer, and using them in various applications, such as asphalt rubber modifiers, adhesives, or an additive in a fracking fluid for oil fracking.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: November 24, 2020
    Assignee: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Eric W. Cochran, R. Christopher Williams, Nacu Hernandez, Elvira Joana Ferreira Peralta, Michael John Forrester
  • Patent number: 10837045
    Abstract: Various embodiments disclosed relate to a sensor assembly probe for determining enzymatic activity. The sensor assembly probe includes one or more fluorescent hydrophobic semi-conductive nanoparticles disposed in an aqueous medium. The assembly further includes an amphiphilic polymer including a substrate for a predetermined enzyme. The amphiphilic polymer coats at least a portion of a surface of the fluorescent hydrophobic semi-conductive nanoparticle.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: November 17, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Nigel Forest Reuel, Nathaniel Kallmyer
  • Patent number: 10835959
    Abstract: A concentric ring gas atomization nozzle with isolated gas supply manifolds is provided for manipulating the close-coupled atomization gas structure to improve the yield of atomized powders.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: November 17, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Joel R. Rieken, Andrew J. Heidloff, Iver E. Anderson
  • Patent number: 10823630
    Abstract: We present a microelectromechanical system (MEMS) graphene-based pressure sensor realized by transferring a large area, few-layered graphene on a suspended silicon nitride thin membrane perforated by a periodic array of micro-through-holes. Each through-hole is covered by a circular drum-like graphene layer, namely a graphene “microdrum”. The uniqueness of the sensor design is the fact that introducing the through-hole arrays into the supporting nitride membrane allows generating an increased strain in the graphene membrane over the through-hole array by local deformations of the holes under an applied differential pressure. Further reasons contributing to the increased strain in the devised sensitive membrane include larger deflection of the membrane than that of its imperforated counterpart membrane, and direct bulging of the graphene microdrum under an applied pressure. Electromechanical measurements show a gauge factor of 4.4 for the graphene membrane and a sensitivity of 2.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: November 3, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Liang Dong, Qiugu Wang, Wei Hong
  • Publication number: 20200340082
    Abstract: Described herein are additive manufacturing methods and products made using such methods. The alloy compositions described herein are specifically selected for the additive manufacturing methods and provide products that exhibit superior mechanical properties as compared to their cast counterparts. Using the compositions and methods described herein, products that do not exhibit substantial coarsening, such as at elevated temperatures, can be obtained. The products further exhibit uniform microstructures along the print axis, thus contributing to improved strength and performance. Additives also can be used in the alloys described herein.
    Type: Application
    Filed: July 9, 2020
    Publication date: October 29, 2020
    Applicants: UT-Battelle, LLC, University of Tennessee Research Foundation, Iowa State University Research Foundation, Inc., Eck Industries Incorporated
    Inventors: Alex J. Plotkowski, Orlando Rios, Sudarsanam Suresh Babu, Ryan R. Dehoff, Ryan Ott, Zachary C. Sims, Niyanth Sridharan, David Weiss, Hunter B. Henderson
  • Patent number: 10804563
    Abstract: An ion conductivity mixed chalcogenide (e.g. oxy-sulfide), mixed network former solid electrolyte is provided for use in solid state batteries.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: October 13, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventor: Steve W. Martin
  • Patent number: 10792421
    Abstract: This invention relates to automatic insulin delivery systems and methods of administering insulin. Preferably the systems and methods comprise a predictive feedforward control.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: October 6, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Derrick K. Rollins, Sr., Yong Mei
  • Patent number: 10792508
    Abstract: Provided herein are embodiments of a Quadruple Butterfly Coil (QBC) configuration having enhanced focality for stimulation of specific areas of a brain for therapeutic treatment. Finite element simulations were conducted for the QBC, the QBC with a single shield, and the QBC with a double shield. The stimulation profiles for these coil configurations were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils was performed to determine volume of stimulation, maximum electric field, location of maximum electric field, and area of stimulation across all 50 head models for both coils.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: October 6, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Priyam Rastogi, Erik Gordon Lee, Magundappa Ravi L. Hadimani, David C. Jiles
  • Patent number: 10793673
    Abstract: The present invention relates to a polymer comprising a repeating group having the structure of formula (I) wherein R, R1, R2, R3, R4, X, and s are as described herein and salt thereof. Also disclosed is a process of synthesizing such polymers.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: October 6, 2020
    Assignee: IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Nacu Hernandez, Mengguo Yan, Eric W. Cochran, John Edward Matthiesen, Jean-Philippe Tessonnier
  • Patent number: 10787672
    Abstract: The present disclosure includes methods and components for production of valuable industrial compounds in yeast. In an embodiment, the present invention provides a nucleic acid construct with increased stability for gene expression or gene editing comprising: a nucleic acid sequence encoding one or more of SEQ ID NO: 1-8 (CENs 1-8); and one or more regulatory elements functional in a yeast cell. In an embodiment of the present invention the nucleic acid constructs are vectors, preferably episomal vectors. High expression promoters, as well as methods for increasing production of compounds such as aromatics are disclosed.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: September 29, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Zengyi Shao, Mingfeng Cao, Miguel Suastegui, Meirong Gao
  • Patent number: 10788384
    Abstract: A method, apparatus, and system to quantify tension forces of the anchor bolts for, e.g., SLTS support structures. A sensing assembly comprising one or more washers is installed along an anchor bolt. The sensing assembly comprises two spaced-apart surfaces between which a capacitance can be measured if electrical potential is created between the surfaces. The capacitance between the surfaces can be calibrated to bolt tension based on the relative distance between the surfaces. An RFRD circuit is connected to the two surfaces. An RF interrogation signal can supply the electrical potential and allow a reading of the responsive capacitance between surfaces to convert the capacitance reading into a bolt tension. Additionally, the introduction of the battery-free RFRD allows data to be acquired wirelessly from a distance, enabling an entirely new method of inspection. With minimum additional hardware cost, it provides a cost-effective way to replace traditional bolt installation and inspection methods.
    Type: Grant
    Filed: January 31, 2018
    Date of Patent: September 29, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: An Chen, Daji Qiao, Long Que