Patents Assigned to IPG Photonics Corporation
  • Patent number: 11141815
    Abstract: Laser processing systems and methods are capable of moving a laser beam while maintaining consistent laser beam characteristics at processing locations. The laser processing systems generate a collimated laser beam having a consistent Z axis power density along at least a portion of a length of the laser beam and dither the collimated laser beam along one of the X and Y axes. The dithering of the collimated laser beam facilitates consistent laser processing on a three-dimensional surface, for example, to provide consistent deposition of a coating in a laser cladding process. A laser processing system may include a beam delivery system that provides both the collimation and the dithering of the collimated laser as well as an adjustment of the beam diameter of the collimated beam.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: October 12, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Joseph Leo Dallarosa, Ben Amar, David Squires
  • Publication number: 20210265799
    Abstract: An active waveguide including active and passive rods which have respective polymeric claddings mechanically and optically coupled to one another so as to define a side pumping scheme. One or a plurality of elements are embedded in one of or both active and passive rods and have a refractive index lower than the lowest of refractive indices of the respective active and passive rods at least 1*10?3. The MM core of the active rod includes inner and outer concentric regions with a concentration of light emitters in the outer region being lower than that of the inner region at more than 50% and, a radius of the inner region being at most 92% of that of the outer region. The unabsorbed pump light at the output of the active waveguide constitutes less than 1% of the delivered pump light which in combination with the refractive index of the embedded elements and selectively doped core regions contribute to laser efficiency of at least 86%.
    Type: Application
    Filed: June 28, 2019
    Publication date: August 26, 2021
    Applicant: IPG PHOTONICS CORPORATION
    Inventors: Eugene SCHERBAKOV, Valentin FOMIN, Andrey ABRAMOV, Aleksey DORONKIN
  • Patent number: 11064611
    Abstract: A method for fabricating a printed circuit, comprising: darkening a surface location of a conductive material with one or more ultrafast pulses of laser radiation and ablating the conductive material at the surface location with one or more longer duration pulses of laser radiation to produce traces or micro via patterns on the surface of a PCB. A hole for a blind micro via is produced by ablating the conductive material at the darkened surface location with one or more longer duration pulses of laser radiation and cleaning a second conductive material under the substrate with one or more further longer duration pulses of laser radiation.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: July 13, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventor: David C. Clark
  • Patent number: 11052482
    Abstract: A laser alignment system is used to align an output fiber with a fiber laser, for example, when coupling a feeding fiber to a process fiber using a beam coupler or switch. The alignment system includes a laser alignment apparatus that is coupled at a first end to the output fiber and at a second end to a beam dump/power meter. The alignment apparatus defines a light passage and a light capture chamber along the light passage. When light is not aligned into the core of the output fiber, at least a portion of the light passing out of the output fiber will be captured by the light capture chamber and detected by a photodetector in optical communication with the light capture chamber. By monitoring the readings of the photodetector, the output fiber may be properly aligned with the laser light from the fiber laser.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: July 6, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventor: Yuri Grapov
  • Patent number: 10978848
    Abstract: A method of inducing light losses at a parasitic wavelength in a fiber laser system includes providing a wavelength discriminator (WD) spaced from and between feeding and process fibers or from the end output of the feeding fiber so as to induce losses of light at parasitic wavelength. The device implementing the disclosed method is configured with a laser source, the delivery fiber and WD spaced at a distance between the surface to be treated and the end of the delivery fiber, wherein the WD receives the parasitic light over free space and is configured as a dichroic filter inducing losses to the light at the parasitic wavelength.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: April 13, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Andrey Mashkin, Valentin Fomin, Fedor Shcherbina, Alexander Dronov, Andrey Abramov, Vadim Mironov, Eugene Scherbakov
  • Patent number: 10974494
    Abstract: Laser lift off systems and methods overlap irradiation zones to provide multiple pulses of laser irradiation per location at the interface between layers of material to be separated. To overlap irradiation zones, the laser lift off systems and methods provide stepwise relative movement between a pulsed laser beam and a workpiece. The laser irradiation may be provided by a non-homogeneous laser beam with a smooth spatial distribution of energy across the beam profile. The pulses of laser irradiation from the non-homogenous beam may irradiate the overlapping irradiation zones such that each of the locations at the interface is exposed to different portions of the non-homogeneous beam for each of the multiple pulses of the laser irradiation, thereby resulting in self-homogenization. Thus, the number of the multiple pulses of laser irradiation per location is generally sufficient to provide the self-homogenization and to separate the layers of material.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: April 13, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Cristian Porneala, Mathew Hannon, Marco Mendes, Jeffrey P. Sercel
  • Patent number: 10951000
    Abstract: A single mode (SM) high power laser system is configured with a laser source outputting a single mode or low mode kW-power light and a passive delivery fiber spliced to an output fiber of the fiber laser source and having a double bottleneck-shaped core. The latter is configured to increase a threshold for nonlinear effects in general and in particular for stimulated Raman scattering (SRS) so that the delivery passive fiber has a fiber length at least twice the length of a delivery passive fiber with a standard uniformly dimensioned core, which may be used with the same laser source, while outputting the kW-power light with an M2 factor less than 2.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: March 16, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Anton Ferin, Valentin Fomin, Andrey Abramov
  • Patent number: 10913130
    Abstract: Methods and systems are provided for using optical interferometry in the context of material modification processes such as surgical laser or welding applications. An imaging optical source that produces imaging light. A feedback controller controls at least one processing parameter of the material modification process based on an interferometry output generated using the imaging light. A method of processing interferograms is provided based on homodyne filtering. A method of generating a record of a material modification process using an interferometry output is provided.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: February 9, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Paul J. L. Webster, James M. Fraser, Victor X. D. Yang
  • Patent number: 10906129
    Abstract: The present invention provides a multi-fiber laser output system that delivers at least three fiber outputs arranged in a circumferential pattern or otherwise at least four distinct laser outputs from a single processing cable. The present invention allows for controlling the at least three laser modules and delivering their respective outputs in a pre-determined sequence in a single processing cable, thereby providing multiple processing steps on a work piece that heretofore required separate optics for each beam. The at least three laser outputs are optimized for use in creating spot welds, seam welds or virtual wobble welds when used for seam welding.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: February 2, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Eugene Scherbakov, Valentin Fomin, Andrey Abramov, Dmitri Yagodkin, Holger Mamerow
  • Patent number: 10898969
    Abstract: Methods and systems are provided for using optical interferometry in the context of material modification processes such as surgical laser, sintering, and welding applications. An imaging optical source that produces imaging light. A feedback controller controls at least one processing parameter of the material modification process based on an interferometry output generated using the imaging light. A method of processing interferograms is provided based on homodyne filtering. A method of generating a record of a material modification process using an interferometry output is provided.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: January 26, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Jordan Kanko, Paul J. L. Webster, James M. Fraser
  • Patent number: 10886690
    Abstract: The present invention provides systems and methods for optical frequency comb generation with self-generated optical harmonics in mode-locked lasers for detecting the carrier envelope offset frequency. The mode-locked laser outputs an optical frequency comb and a harmonic output. The harmonic output provides an optical heterodyne resulting in a detectable beat note. A carrier envelope offset frequency detector detects the beat note and generates an optical frequency comb signal. The signal can be used to stabilize the optical frequency comb output.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: January 5, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventor: Sergey Vasilyev
  • Patent number: 10857627
    Abstract: A fiber laser-treated workpiece is configured with a body having a discontinuous surface which defines a plurality of spaced through-going passages so that each passage is delimited by a peripheral layer having a surface characteristic which includes a recast layer or one or more microcracks or a combination thereof. The passages are provided by a high power Yb fiber laser operating in a pulsed regime and configured to output either a single pulse per an entire passage or a train of pulses per the passage. The Yb fiber laser is so configured that, if formed, the recast layer and micro-crack each are smaller than respective standards in an airspace industry.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: December 8, 2020
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: William Shiner, Steven Maynard
  • Patent number: 10821552
    Abstract: A modular laser processing enclosure includes an enclosure housing defining a laser processing area. The enclosure housing includes a top defining a top laser processing access opening providing access to the laser processing area and at least two sides defining side laser processing access openings providing access to the laser processing area. The side laser processing access openings may be located proximate the top of the enclosure housing. The enclosure may further include at least one plate configured to cover any one of the laser processing access openings. Optionally, at least one laser processing head may be configured to be mounted to any one of the laser processing access openings and/or a least one part handling mechanism may be provided to access the laser processing area through any one of the laser processing access openings for delivering parts to and/or from the laser processing area.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: November 3, 2020
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Joseph Dallarosa, Benjamin Amar, Mark Labbe
  • Patent number: 10827650
    Abstract: The systems and methods described herein provide a submarine optical repeater in which a plurality of thermally conductive, electrically insulative, ceramic members form a hollow structure having an interior volume that is maintained at a relatively high first voltage when compared to a relatively low second voltage maintained external to the hollow structure. A conductive element at the first voltage disposed in the interior volume provides power to optical repeaters disposed on the interior surface of the hollow structure. Power flows radially outward from the conductive element to the optical repeaters to the surrounding environment about the submarine optical repeater. The thermally conductive ceramic members electrically isolate the optical repeaters from the second voltage while providing a thermally conductive pathway for the heat generated during the operation of the optical repeaters to dissipate into the surrounding environment.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: November 3, 2020
    Assignee: IPG PHOTONICS CORPORATION
    Inventor: Sergio Walter Grassi
  • Patent number: 10807199
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: October 20, 2020
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Jeffrey P. Sercel, Marco Mendes, Rouzbeh Sarrafi, Joshua Schoenly, Xiangyang Song, Mathew Hannon, Miroslaw Sokol
  • Patent number: 10792760
    Abstract: Laser processing systems and methods image a multiple core array to a work surface in a multiple processing beam array. An optical system separates processing beams and converges the beams toward the work surface and focuses each beam of the array at or near the work surface. A central axis with access for filler material flow to the work surface is provided. The processing beam array and central filler material feed provide omni-directional additive laser processing capability.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: October 6, 2020
    Assignee: IPG Photonics Corporation
    Inventors: Mustafa Coskun, Felix Stukalin, Jonathan S. Ehrmann
  • Patent number: 10759000
    Abstract: The present invention provides a fiber laser system that delivers from a single processing cable a multibeam output. The present invention allows for controlling multiple fiber laser modules and delivering their respective outputs in a pre-determined sequence but in a single processing cable, thereby providing multiple processing steps on a work piece that heretofore required separate optics for each beam. Custom fiber laser systems that combine processing steps tailored for a specific industrial application such as pre-heating, cutting, cleaning, welding, brazing, ablating, annealing, cooling, polishing and the like can be readily provided because of the present invention.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: September 1, 2020
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Andrey Abramov, Valentin Fomin, Eugene Shcherbakov, Holger Mamerow, Dmitri Yagodkin
  • Patent number: 10751835
    Abstract: A laser welding head with movable mirrors may be used to perform welding operations, for example, with wobble patterns and/or seam finding/tracking and following. The movable mirrors provide a wobbling movement of one or more beams within a relatively small field of view, for example, defined by a scan angle of 1-2°. The movable mirrors may be galvanometer mirrors that are controllable by a control system including a galvo controller. The laser welding head may also include a diffractive optical element to shape the beam or beams being moved. The control system may also be used to control the fiber laser, for example, in response to the position of the beams relative to the workpiece and/or a sensed condition in the welding head such as a thermal condition proximate one of the mirrors.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: August 25, 2020
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Yuri Grapov, Kris Pruyn, Felix Stukalin, Erik Hinrichsen
  • Patent number: 10693579
    Abstract: A cross connect apparatus or system with transparent clocking, consistent with embodiments described herein, connects a selected source or ingress port to a selected destination or egress port and clocks data out of the selected egress port using a synthesized clock that is adjusted to match a recovered clock from the selected ingress port. A transparent clocking system may generate the synthesized clock signal with adjustments in response to a parts per million (PPM) rate detected for the associated recovered clock signal provided by the selected ingress port. The cross connect system with transparent clocking may be a 400G cross connect system with 10G resolution. The cross connect system with transparent clocking may be used in optical transport network (OTN) applications, for example, to provide an aggregator and/or an add-drop multiplexer (ADM) or to provide a reconfigurable optical add-drop multiplexer (ROADM) upgrade to a higher data rate.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: June 23, 2020
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Jihad Boura, George Buabbud
  • Patent number: RE48398
    Abstract: The inventive system for crystallizing an amorphous silicon (a-Si) film is configured with a quasi-continuous wave fiber laser source operative to emit a film irradiating pulsed beam. The fiber laser source is operative to emit a plurality of non-repetitive pulses incident on the a-Si. In particular, the fiber laser is operative to emit multiple discrete packets of film irradiating light at a burst repetition rate (BRR), and a plurality of pulses within each packet emitted at a pulse repetition rate (PRR) which is higher than the BRR. The pulse energy, pulse duration of each pulse and the PRR are controlled so that each packet has a desired packet temporal power profile (W/cm2) and packet energy sufficient to provide transformation of a-Si to polysilicon (p-Si) at each location of the film which is exposed to at least one packets.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: January 19, 2021
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Alexey Avdokhin, Yuri Erokhin, Manuel Leonardo, Alexander Limanov, Igor Samartsev, Michael von Dadelszen