Patents Assigned to IPG Photonics Corporation
  • Patent number: 9841654
    Abstract: An optical crystal can be mounted to a mounting block configured to receive the crystal. A base portion on the mounting block utilizes two walls forming a corner and a single biasing spring clip to secure the crystal. The spring clip applies forces in two different directions substantially orthogonal to the two walls. The spring clip is based off a symmetrical geometry which applies nearly the same force application in both directions. The spring also features bend regions that contact the crystal in such a way as to reduce the presence of point loads or stress risers. The length of contact along the crystal is maximized, allowing for proper force distribution and a sufficient surface are contact for static holding capabilities.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: December 12, 2017
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Daniel Swanbeck, Mark W. Byer, Manuel Martinez
  • Publication number: 20170299943
    Abstract: An extra cavity harmonic generator system may produce a round, non-astigmatic third harmonic output beam from a nominally round, non-astigmatic, diffraction limited input fundamental beam. The system may include a second harmonic generation crystal. An input fundamental beam size is expanded in a non-walkoff direction for the SHG crystal at the SHG crystal input face. A higher harmonic generation crystal has an output face oriented at an oblique angle of incidence in a non-walkoff direction for the HHG crystal such that an output higher harmonic beam size is contracted in this direction. Expansion of the input fundamental beam at the SHG crystal input face exceeds reduction of third harmonic beam at the HHG crystal output face.
    Type: Application
    Filed: March 13, 2014
    Publication date: October 19, 2017
    Applicant: IPG Photonics Corporation
    Inventors: Manuel J. Leonardo, Mark A. Arbore, Gregory L. Keaton
  • Patent number: 9764427
    Abstract: Laser processing of hard dielectric materials may include cutting a part from a hard dielectric material using a continuous wave laser operating in a quasi-continuous wave (QCW) mode to emit consecutive laser light pulses in a wavelength range of about 1060 nm to 1070 nm. Cutting using a QCW laser may be performed with a lower duty cycle (e.g., between about 1% and 15%) and in an inert gas atmosphere such as nitrogen, argon or helium. Laser processing of hard dielectric materials may further include post-cut processing the cut edges of the part cut from the dielectric material, for example, by beveling and/or polishing the edges to reduce edge defects. The post-cut processing may be performed using a laser beam with different laser parameters than the beam used for cutting, for example, by using a shorter wavelength (e.g., 193 nm excimer laser) and/or a shorter pulse width (e.g., picosecond laser).
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: September 19, 2017
    Assignee: IPG Photonics Corporation
    Inventors: Jeffrey P. Sercel, Marco Mendes, Rouzbeh Sarrafi, Joshua Schoenly, Xiangyang Song, Mathew Hannon, Miroslaw Sokol
  • Patent number: 9716365
    Abstract: A fiber block is configured with a fiber block including a Nd-doped active fiber and a pump-light delivery fiber which has a stretch extending along the active fiber in a side-to-side configuration so as to lunch pump light into the Nd-doped core of the active fiber. The core of the active fiber is surrounded by at least one or more claddings which, like the core, have a double bottleneck cross-section with a relatively large-area central region and relatively small input and output regions. The pump light delivery fiber is structured to have a substantially dumbbell cross-section with a relatively small-area central region coextending with the central region of the active fibers. The active fiber is dimensioned so that the overall length of the active fiber is configured to provide for the maximal amplification of the laser signal in a 900 nm range while limiting amplification in the 1060 nm range to the preset threshold.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: July 25, 2017
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Valentin P Gapontsev, Ilia Zaytsev, Mikhail Vyatkin
  • Patent number: 9669613
    Abstract: Laser lift off systems and methods overlap irradiation zones to provide multiple pulses of laser irradiation per location at the interface between layers of material to be separated. To overlap irradiation zones, the laser lift off systems and methods provide stepwise relative movement between a pulsed laser beam and a workpiece. The laser irradiation may be provided by a non-homogeneous laser beam with a smooth spatial distribution of energy across the beam profile. The pulses of laser irradiation from the non-homogenous beam may irradiate the overlapping irradiation zones such that each of the locations at the interface is exposed to different portions of the non-homogeneous beam for each of the multiple pulses of the laser irradiation, thereby resulting in self-homogenization. Thus, the number of the multiple pulses of laser irradiation per location is generally sufficient to provide the self-homogenization and to separate the layers of material.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 6, 2017
    Assignee: IPG Photonics Corporation
    Inventors: Cristian Porneala, Mathew Hannon, Marco Mendes, Jeffrey P. Sercel
  • Patent number: 9667023
    Abstract: A high power fiber laser system includes a booster winch is configured as a fiber amplifier extending over free space, pump source and laser head including a reflective element which receives pump light and reflects toward the output end of the booster in a counter signal-propagating direction. The booster is configured with concentric and coextending frustoconically shaped (“MM”) core and cladding around the core. The core includes a mode transition region expanding between small diameter SM input and large diameter MM output core ends and configured so that amplification of high order modes is substantially suppressed as a single mode (“SM”) signal light propagates from the input to output core ends. The laser head receives output ends of respective pump light delivery fibers and signal fiber, respectively. The pump source is structured with a plurality of independent sub pumps arranged around the booster.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: May 30, 2017
    Assignee: IPG Photonics Corporation
    Inventors: Valentin Fomin, Anton Ferin, Mikhail Abramov, Igor Samartsev, Valentin Gapontsev
  • Patent number: 9653298
    Abstract: Thermal processing is performed by transmission of mid infra-red laser light through a substrate such as a semiconductor substrate with a limited mid infra-red transmission range. The laser light is generated by a rare-earth-doped fiber laser and is directed through the substrate such that the transmitted power is capable of altering a target material at a back side region of the substrate, for example, on or spaced from the substrate. The substrate may be sufficiently transparent to allow the transmitted mid infra-red laser light to alter the target material without altering the material of the substrate. In one example, the rare-earth-doped fiber laser is a high average power thulium fiber laser operating in a continuous wave (CW) mode and in a 2 ?m spectral region.
    Type: Grant
    Filed: January 14, 2013
    Date of Patent: May 16, 2017
    Assignee: IPG Photonics Corporation
    Inventors: Anthony P. Hoult, Heinrich Endert
  • Patent number: 9649727
    Abstract: Laser cutting systems and methods are used to cut amorphous metal materials, such as thin amorphous metal ribbons or foils, with a relatively high speed. Embodiments of laser cutting systems and methods described herein also allow cutting with reduced crystallization, and thus reduced increases in thickness, at the cut edges and with reduced cracks or other cutting defects at the cut edges. A fiber laser, such as an Ytterbium fiber laser, is used to generate a laser beam with a power level greater than about 50 W. The laser beam is focused and directed at the amorphous metal material with a beam spot size of about 30 microns or less. The focused laser beam and the amorphous metal material are moved relative to each other at a speed greater than about 18 inches per second such that the focused laser beam cuts the amorphous metal material.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: May 16, 2017
    Assignee: IPG Photonics Corporation
    Inventor: Vijay Kancharla
  • Patent number: 9647410
    Abstract: A multimode (“MM”) fiber oscillator is configured with MM active fiber doped with light emitters, a pair of MM passive fibers spliced to respective opposite ends of the MM active fiber, and a plurality of MM fiber Bragg gratings (“FBG”) written in respective cores of the MM passive fibers to provide a resonant cavity. The passive and active fibers are configured with respective cores which are dimensioned with respective diameters matching one another and substantially identical numerical apertures.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: May 9, 2017
    Assignee: IPG Photonics Corporation
    Inventors: Andrey Mashkin, Fedor Shcherbina
  • Patent number: 9636776
    Abstract: A method for marking a thin workpiece is designed to prevent deformation of the workpiece. A plurality of lasers are opposed to respective opposite sides of the workpiece so as to both sides are heat treated. The lasers can operate synchronously with the respective emitted beams aligned with one another. As a result, the workpiece does not exhibit signs of deformation upon the completion of the marking. The workpiece is made either from plastic or metals and has a thickness not exceeding 2 millimeters. The lasers each are configured as either a fiber laser or a gas laser. The marking can be performed by lasers which are configured uniformly or non-uniformly and includes annealing, engraving and ablating. The marking can be performed synchronously or sequentially. The multi-surface marking could also be used to cause “distortion of the surface in a more controlled or desired fashion.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: May 2, 2017
    Assignee: IPG Photonics Corporation
    Inventors: Joseph Dallarosa, Andrey Nemera
  • Patent number: 9625653
    Abstract: A universal fiber optic connector includes a housing and a fiber attachment element configured to attach an optical fiber in the housing. The attachment element positions the optical fiber such that an end face of the fiber is held within the housing. The fiber end face is positioned such that a beam of light emerging from the fiber end face has a defined wavefront located at a specified interface.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: April 18, 2017
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Mark W. Byer, Manuel J. Leonardo, Gregory L. Keaton
  • Patent number: 9618754
    Abstract: An optical system for forming a final image of a non-circular light source on a workpiece with a desired non-circular cross-section and desired size B includes a plurality of spaced lenses. The plurality of lenses are arranged with spaced upstream and downstream lenses which are configured to transmit the beam emitted by the light source. The optical system is configured with an F-theta lens spaced downstream from the downstream lens and converging the beam incident thereon so that the beam has a final waist. The F-theta and downstream lenses are spaced apart so that F ? ? 4 Fth = A B , wherein F4 a positive focal length of the downstream lens, Fth is the negative focus of the F-theta lens, B is the desired size of the final image, and A is a size of a preliminary noncircular image of the source different from the desired size B.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: April 11, 2017
    Assignee: IPG PHOTONICS CORPORATION
    Inventor: Timur Erbatov
  • Patent number: 9604313
    Abstract: Vision correction and tracking systems may be used in laser machining systems and methods to improve the accuracy of the machining. The laser machining systems and methods may be used to scribe one or more lines in large flat workpieces such as solar panels. In particular, laser machining systems and methods may be used to scribe lines in thin film photovoltaic (PV) solar panels with accuracy, high speed and reduced cost. The vision correction and/or tracking systems may be used to provide scribe line alignment and uniformity based on detected parameters of the scribe lines and/or changes in the workpiece.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 28, 2017
    Assignee: IPG Photonics Corporation
    Inventors: Jeffrey P. Sercel, Donald J. Lemmo, Terrence A. Murphy, Jr., Lawrence Roberts, Tom Loomis, Miroslaw Sokol
  • Patent number: 9575390
    Abstract: An optical fiber is optically coupled to an optical multiplexer. First and second wavelength-selective reflectors are formed onto the optical fiber. The first wavelength selective reflector is configured to reflect radiation of a first wavelength and the second wavelength reflective selector is configured to reflect radiation of a second wavelength that is longer than the first wavelength. A resonant laser cavity is formed between transmission fiber acting as distributed Rayleigh mirror and first and second wavelength selective reflectors. The first and second wavelength-selective reflectors and the optical fiber are configured such that Raman scattering and gain in the transmission fiber converts pump radiation at a pump wavelength less than the first wavelength to radiation of the first wavelength and also convert radiation of the first wavelength to radiation of the second wavelength.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: February 21, 2017
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Cristiano Mornatta, Alessandro Festa
  • Publication number: 20160372884
    Abstract: A fiber Raman laser is configured with a microstructured double clad passive fiber which has an inner cladding receiving and guiding a high intensity pump light. The double-clad passive fiber farther has a eon surrounded by the inner cladding and an outer cladding. An arrangement of air holes is configured to define the inner, waveguiding cladding so that an NA of the latter varies between about 0.25-0.9 allowing this to reduce the diameter of the inner cladding. The passive fiber is characterized by a substantial overlap between the pump light and 1st stokes in the care and further includes an absorber operative to substantially suppress the signal light at the 2nd strokes so that the Ge-doped fiber outputs a SM, bright radiation at up to kW levels.
    Type: Application
    Filed: December 27, 2013
    Publication date: December 22, 2016
    Applicant: IPG Photonics Corporation
    Inventors: Valentin Gapontsev, Nikolai Platanov, Alexander Yusim
  • Publication number: 20160352070
    Abstract: A method for manufacturing submounts for laser diodes includes the steps of providing a base configured with a ceramic carrier and a metal layer deposited upon the substrate. The method further includes using a pulsed laser operative to generate a plurality of pulses which are selectively trained at predetermined pattern on the metal layer's surface so as to ablate the desired regions of the metal layer to the desired depth. Thereafter the base is divided into a plurality of submounts each supporting a laser diode. The metal layer includes a silver sub-layer deposited upon the ceramic and having a thickness sufficient to effectively facilitate heat dissipation.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Applicant: IPG Photonics Corporation
    Inventors: Alexander OVTCHINNIKOV, Igor BERISHEV, Alexey KOMISSAROV, Svletan TODOROV, Pavel TRUBENKO
  • Publication number: 20160285228
    Abstract: A high power single mode (“SM”) laser system includes an amplifier configured with a monolithic fiber to rod fiber waveguide which is structured with a multimode (“MM”) core and at least one cladding surrounding the core. The MM core is configured with a small diameter uniform input region receiving and guiding a SM signal light, a mode-transforming frustoconical core region expanding outwards from the input region and a relatively large diameter uniform output portion. The high power laser system is further structured with a MM pump light delivery fiber having a numerical aperture NA2, which is at most equal to that one of the output core portion. The amplifier and pump light output fiber traverse an unconfined delivery cable and terminate upstream from a mirror which is configured to focus the incident pump light into the core of the amplifier in a counter-propagating direction.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 29, 2016
    Applicant: IPG Photonics Corporation
    Inventors: Valentin Gapontsev, Igor Samartsev, Dimitri Yagodkin
  • Patent number: 9440312
    Abstract: A method for manufacturing submounts for laser diodes includes the steps of providing a base configured with a ceramic carrier and a metal layer deposited upon the substrate. The method further includes using a pulsed laser operative to generate a plurality of pulses which are selectively trained at predetermined pattern on the metal layer's surface so as to ablate the desired regions of the metal layer to the desired depth. Thereafter the base is divided into a plurality of submounts each supporting a laser diode. The metal layer includes a silver sub-layer deposited upon the ceramic and having a thickness sufficient to effectively facilitate heat dissipation.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: September 13, 2016
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Alexander Ovtchinnikov, Igor Berishev, Alexey Komissarov, Svletan Todorov, Pavel Trubenko
  • Patent number: 9444215
    Abstract: A high power single mode (“SM”) laser system includes an amplifier configured with a monolithic fiber to rod fiber waveguide which is structured with a multimode (“MM”) core and at least one cladding surrounding the core. The MM core is configured with a small diameter uniform input region receiving and guiding a SM signal light, a mode-transforming frustoconical core region expanding outwards from the input region and a relatively large diameter uniform output portion. The high power laser system is further structured with a MM pump light delivery fiber having a numerical aperture NA2, which is at most equal to that one of the output core portion. The amplifier and pump light output fiber traverse an unconfined delivery cable and terminate upstream from a mirror which is configured to focus the incident pump light into the core of the amplifier in a counter-propagating direction.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: September 13, 2016
    Assignee: IPG PHOTONICS CORPORATION
    Inventors: Valentin Gapontsev, Igor Samartsev, Dimitri Yagodkin
  • Patent number: D796974
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: September 12, 2017
    Assignee: IPG Photonics Corporation
    Inventors: Joseph Dallarosa, Benjamin Amar, Mark Labbe