Patents Assigned to JGC Catalysts and Chemicals Ltd.
  • Patent number: 11420192
    Abstract: In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and zirconium. The framework-substituted USY zeolite comprises at least one rare earth element. Methods of making and using such a catalyst in a hydrocracking process are also disclosed.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: August 23, 2022
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Patent number: 11332678
    Abstract: Methods for processing paraffinic naphtha include contacting a paraffinic naphtha feedstock with a catalyst system in a dehydrogenation reactor. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite to produce a dehydrogenated product stream. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite. The framework-substituted USY-type zeolite has a modified USY framework. The modified USY framework includes a USY aluminosilicate framework modified by substituting a portion of framework aluminum atoms of the USY aluminosilicate framework with substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof. A dehydrogenation catalyst for dehydrogenating a paraffinic naphtha includes the framework-substituted ultra-stable Y (USY)-type zeolite.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: May 17, 2022
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Ali H. Alshareef, Mitsunori Watabe, Koji Uchida
  • Patent number: 11312634
    Abstract: A method for producing a dispersion liquid of silica particles, by simultaneously adding a liquid A containing silane alkoxide and a liquid B containing an alkali catalyst and water to a liquid I containing silica seed particles to cause the particles to grow, so as to produce silica particles; wherein the variation rate of the mole ratio of the alkali catalyst to silica components in the reaction system during a period from the start to the end of the addition relative to the initial mole ratio is 0.90 to 1.10; and the variation rate of the mole ratio of water to the silica components in the reaction system during a period from the start to the end of the addition relative to the initial mole ratio is 0.90 to 1.10.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: April 26, 2022
    Assignee: JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Miki Egami, Mitsuaki Kumazawa, Hirotada Arakane, Ryo Muraguchi, Toshiharu Hirai
  • Publication number: 20220097031
    Abstract: In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and/or zirconium and/or hafnium. The framework-substituted USY zeolite has an average crystallite size from 5 ?m to 50 ?m. Methods of making and using such a catalyst in a hydrocracking process are also disclosed.
    Type: Application
    Filed: September 30, 2020
    Publication date: March 31, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Patent number: 11274068
    Abstract: Methods for interconverting olefins in an olefin-rich hydrocarbon stream include contacting the olefin-rich hydrocarbon stream with a catalyst system in an olefin interconversion unit to produce an interconverted effluent comprising ethylene and propylene. The contacting may be conducted at a reaction temperature from 450° C. to 750° C., a reaction pressure from 1 bar to 5 bar, and a residence time from 0.5 seconds to 1000 seconds. The catalyst system includes a framework-substituted beta zeolite. The framework-substituted beta zeolite has a *BEA aluminosilicate framework that has been modified by substituting a portion of framework aluminum atoms of the *BEA aluminosilicate framework with beta-zeolite Al-substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: March 15, 2022
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Patent number: 11267715
    Abstract: Aiming at providing a ceria-based composite particle dispersion capable of polishing silica film, Si wafer or even hard-to-process material at high polishing rate, and can give high surface accuracy, disclosed is a ceria-based composite particle dispersion that contains a ceria-based composite particle that has an average particle size of 50 to 350 nm, to solve the aforementioned problem, featured by that the ceria-based composite particle has a mother particle, a cerium-containing silica layer, a child particle, and an easily soluble silica-containing layer; the mother particle contains amorphous silica as a major ingredient; the child particle contains crystalline ceria as a major ingredient; ratio of the mass of the easily soluble silica-containing layer relative to the mass of the ceria-based composite particle falls in a specific range; mass ratio of silica and ceria in the ceria-based composite particle falls in a specific range; the ceria-based composite particle, when analyzed by X-ray diffractometry,
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: March 8, 2022
    Assignee: JGC Catalysts and Chemicals Ltd.
    Inventors: Michio Komatsu, Hiroyasu Nishida, Yuji Tawarazako, Shinya Usuda, Kazuhiro Nakayama
  • Publication number: 20220055908
    Abstract: A silica-based particle dispersion including a silica-based particle group and a high polishing rate and high surface precision is achieved to a silica-based substrate or a NiP-plated substrate to be polished or the like. A silica-based particle dispersion containing a group including irregularly-shaped and non-irregularly-shaped silica-based particles, wherein the irregularly-shaped silica-based particles each have a plurality of small holes thereinside and a covering silica layer which covers the core, and the silica-based particle group satisfies [1]-[3]. [1] Having an average particle size (D1) of 100-600 nm, and a particle size (D2) of 30-300 nm in terms of specific surface area. [2] An irregular-shape degree D (D=D1/D3) represented by the average particle size (D1) and a projected area-equivalent particle size (D3) being in the range of 1.1-5.0. [3] When waveform separation is performed on a volume-reference particle size distribution, a multi-peak distribution in which three or more peaks are detected.
    Type: Application
    Filed: October 4, 2019
    Publication date: February 24, 2022
    Applicant: JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Michio KOMATSU, Kazuhiro NAKAYAMA, Tetsuya TANAKA, Yuji TAWARAZAKO, Tatsuya MUKAI, Yuki MIWA
  • Patent number: 11254580
    Abstract: A method for producing a liquid dispersion containing irregular-shaped silica particles in which two or more primary particles are linked together, by simultaneously adding a liquid A containing silane alkoxide and a liquid B containing an alkali catalyst and water to a liquid I consisting substantially of an organic solvent to cause hydrolysis and polycondensation of the silane alkoxide, wherein the period from the start of the addition until the silica concentration of the reaction system at the end of the addition reaches 70% is 20% or less of the full reaction time period.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: February 22, 2022
    Assignee: JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Miki Egami, Mitsuaki Kumazawa, Hirotada Arakane, Ryo Muraguchi, Toshiharu Hirai
  • Publication number: 20220032273
    Abstract: In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and zirconium. The framework-substituted USY zeolite comprises at least one rare earth element. Methods of making and using such a catalyst in a hydrocracking process are also disclosed.
    Type: Application
    Filed: July 28, 2020
    Publication date: February 3, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Publication number: 20220023836
    Abstract: A production method comprises the steps of obtaining a mixed slurry by adding an alumina component and at least one selected from an alumina component and a clay mineral to a binder containing a silicon oxide; obtaining a metal trapping precursor by mixing the mixed slurry with a compound of a first metal component and heating the mixed slurry of metal component; and obtaining a metal trapping by drying and calcining the metal trapping precursor. A metal trapping comprises: a binder mainly containing silicon oxide, one or two selected from an alumina component and a clay mineral, and an oxide of a first metal component; having no peak of silicate of the first metal component detected in X-ray diffraction analysis, having an attrition resistance index CAI within a predetermined range. A fluid catalytic cracking catalyst comprises the metal trapping, a zeolite component, a binder component, and a clay mineral component.
    Type: Application
    Filed: November 8, 2019
    Publication date: January 27, 2022
    Applicant: JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Mayumi Eto, Takaki Mizuno, Tomohiro Mitsui, Hiroshi Yamazaki, Hiroki Hasegawa
  • Publication number: 20220024839
    Abstract: Methods for interconverting olefins in an olefin-rich hydrocarbon stream include contacting the olefin-rich hydrocarbon stream with a catalyst system in an olefin interconversion unit to produce an interconverted effluent comprising ethylene and propylene. The contacting may be conducted at a reaction temperature from 450° C. to 750° C., a reaction pressure from 1 bar to 5 bar, and a residence time from 0.5 seconds to 1000 seconds. The catalyst system includes a framework-substituted beta zeolite. The framework-substituted beta zeolite has a *BEA aluminosilicate framework that has been modified by substituting a portion of framework aluminum atoms of the *BEA aluminosilicate framework with beta-zeolite Al-substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Publication number: 20220025276
    Abstract: Methods for processing paraffinic naphtha include contacting a paraffinic naphtha feedstock with a catalyst system in a dehydrogenation reactor. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite to produce a dehydrogenated product stream. The catalyst system includes a framework-substituted ultra-stable Y (USY)-type zeolite. The framework-substituted USY-type zeolite has a modified USY framework. The modified USY framework includes a USY aluminosilicate framework modified by substituting a portion of framework aluminum atoms of the USY aluminosilicate framework with substitution atoms independently selected from the group consisting of titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof. A dehydrogenation catalyst for dehydrogenating a paraffinic naphtha includes the framework-substituted ultra-stable Y (USY)-type zeolite.
    Type: Application
    Filed: July 23, 2020
    Publication date: January 27, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Ali H. Alshareef, Mitsunori Watabe, Koji Uchida
  • Publication number: 20220008908
    Abstract: A method for producing a hydrocracking catalyst includes preparing a framework substituted Y-type zeolite, preparing a binder, co-mulling the framework substituted Y-type zeolite, the binder, and one or more hydrogenative metal components to form a catalyst precursor, and calcining the catalyst precursor to generate the hydrocracking catalyst. The framework substituted Y-type zeolite is prepared by calcining a Y-type zeolite at 500° C. to 700° C. to form a calcined Y-type zeolite. Further, the framework substituted Y-type zeolite is prepared by forming a suspension containing the calcined Y-type zeolite, the suspension having a liquid to solid mass ratio of 5 to 15, adding acid to adjust the pH of the suspension to less than 2.0, adding and mixing one or more of a zirconium compound, a hafnium compound, or a titanium compound to the suspension, and neutralizing the pH of the suspension to obtain the framework substituted Y-type zeolite.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 13, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Publication number: 20220001362
    Abstract: A fluid catalytic cracking catalyst composition (FCC catalyst composition) includes a framework-substituted ultra-stable Y-type zeolite (USY zeolite) having one or more transition metals substituted into the framework of a USY zeolite and a FCC zeolite cracking additive. A method for upgrading a hydrocarbon feed includes contacting the hydrocarbon feed with the FCC catalyst composition of the present disclosure at reaction conditions sufficient to upgrade at least a portion of the hydrocarbon feed. A method for upgrading a hydrocarbon feed includes passing the hydrocarbon feed to a fluid catalytic cracking unit, contacting the hydrocarbon feed with a FCC catalyst composition in the fluid catalytic cracking unit under reaction conditions sufficient to cause at least a portion of the hydrocarbon feed to undergo cracking reactions to produce a cracking reaction mixture comprising a used FCC catalyst composition and a cracked effluent comprising one or more olefins.
    Type: Application
    Filed: July 2, 2020
    Publication date: January 6, 2022
    Applicants: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Yaming Jin, Masaru Ushio, Seiji Arakawa
  • Patent number: 11167266
    Abstract: Provided is a hydrodesulfurization catalyst for hydrocarbon oil, the catalyst comprising: an inorganic oxide carrier comprising Si, Ti and Al; and at least one metal component, carried on the inorganic oxide carrier, being selected from the group consisting of group 6 elements, group 8 elements, group 9 elements and group 10 elements, wherein the content of Al in the inorganic oxide carrier is 50% by mass or higher in terms of Al2O3; the content of Si therein is 1.0 to 10% by mass in terms of SiO2; and the content of Ti therein is 12 to 28% by mass in terms of TiO2; and in the inorganic oxide carrier, the absorption edge wavelength of an absorption peak from Ti is 364 nm or shorter as measured by ultraviolet spectroscopy.
    Type: Grant
    Filed: March 9, 2018
    Date of Patent: November 9, 2021
    Assignees: ENEOS CORPORATION, JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Tomohisa Hirano, Masanori Yoshida, Hiroyuki Seki, Tomoyasu Kagawa, Mitsunori Watabe
  • Patent number: 11154845
    Abstract: In accordance with one or more embodiments of the present disclosure, a catalyst composition includes a catalyst support and at least one hydrogenative metal component disposed on the catalyst support. The catalyst support includes at least one USY zeolite having a framework substituted with titanium and zirconium and at least one beta zeolite also having a framework substituted with titanium and zirconium. A method of using such a catalyst in a hydrocracking process is also disclosed.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: October 26, 2021
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Publication number: 20210316283
    Abstract: A fluid catalytic cracking catalyst for hydrocarbon oil that is a blend of two types of fluid catalytic cracking catalysts each of which has a different hydrogen transfer reaction activity or has a pore distribution within a specific range after being pseudo-equilibrated. One catalyst is a catalyst containing a zeolite and matrix components, and the other catalyst is a catalyst containing a zeolite and matrix components. This catalyst is composed of the one catalyst and the other catalyst blended at a mass ratio within a range of 10:90 to 90:10.
    Type: Application
    Filed: July 22, 2019
    Publication date: October 14, 2021
    Applicant: JGC Catalysts and Chemicals Ltd.
    Inventors: Takaki Mizuno, Chisuzu Tanaka, Tomohiro Mitsui
  • Patent number: 11142703
    Abstract: Methods for cracking a hydrocarbon oil include contacting the hydrocarbon oil with a catalyst system in a fluidized catalytic cracking unit to produce light olefins and gasoline fuel. The catalyst system includes a FCC base catalyst and a catalyst additive. The FCC base catalyst includes a Y-zeolite. The catalyst additive includes a framework-substituted *BEA-type zeolite. The framework-substituted *BEA-type zeolite has a modified *BEA framework. The modified *BEA framework is a *BEA aluminosilicate framework modified by substituting a portion of framework aluminum atoms of the *BEA aluminosilicate framework with beta-zeolite Al-substitution atoms selected from titanium atoms, zirconium atoms, hafnium atoms, and combinations thereof. The FCC base catalyst may include a framework-substituted ultra-stable Y (USY)-zeolite as the Y-zeolite.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: October 12, 2021
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center Petroleum
    Inventors: Omer Refa Koseoglu, Robert Peter Hodgkins, Mitsunori Watabe, Koji Uchida
  • Patent number: 11122797
    Abstract: Provided is a repellent material capable of maintaining a stable repelling effect for a long period of time. A pest repellent material of the present invention includes porous particles including primary particles forming pores and aggregating, and an insect repellent component present in the pores. The primary particles contain silica as a component, and in an infrared absorption spectrum of the pest repellent material, a ratio (I1/I2) of the maximum absorbance (I1) at 3730 to 3750 cm?1 to the maximum absorbance (I2) at 1160 to 1260 cm?1 is 0.005 or less. A contact angle of the porous particles with water is greater than 90°, and the contact angle of the porous particles with the insect repellent component is 1° to 90°. It is preferred that 2 to 5 ml of the insect repellent component is contained based on 1 gram of the porous particles.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: September 21, 2021
    Assignee: JGC CATALYSTS AND CHEMICALS LTD.
    Inventors: Satoshi Watanabe, Naoyuki Enomoto
  • Patent number: 11098256
    Abstract: A process is provided for improving cold flow properties of distillates, the process comprises the step of contacting a hydrocarbon feedstock with a framework-substituted ultra-stable Y (USY)-type zeolite in which a portion of aluminum atoms constituting a zeolite framework thereof is substituted with zirconium atoms and/or titanium and/or hafnium atoms, thereby producing a dewaxed distillate product.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: August 24, 2021
    Assignees: Saudi Arabian Oil Company, JGC Catalysts and Chemicals Ltd., Japan Cooperation Center, Petroleum
    Inventors: Omer Refa Koseoglu, Mitsunori Watabe, Tomoyasu Kagawa, Koji Uchida