Patents Assigned to Johns Hopkins University
  • Patent number: 11914129
    Abstract: The present invention is directed toward a system and method for STED nanography, which reduces background noise. To remove background noise from a STED image, the polarization of the STED beam is altered from that used to obtain the original image. A polarized image is obtained. This polarized image can then be subtracted from the original image to remove noise inherent to the image.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: February 27, 2024
    Assignee: The Johns Hopkins University
    Inventors: Taekjip Ha, Jong-Chan Lee, Ye Ma
  • Patent number: 11911356
    Abstract: The present invention relates to the field of cancer. More specifically, the present invention provides methods and compositions useful for the treatment of cancer characterized by TERT and BRAF mutations. In a specific embodiment, a method for treating a mutant telomerase reverse trancriptase (TERT) enzyme-associated cancer in a subject comprises the step of administering to the subject an anti-cancer agent that inhibits one or more of FOS, GABPB, the formation of the GABPA-GABPB complex or the binding of the GABPA-GABPB complex to a mutant TERT promoter.
    Type: Grant
    Filed: December 22, 2018
    Date of Patent: February 27, 2024
    Assignee: The Johns Hopkins University
    Inventors: Michael Mingzhao Xing, Rengyun Liu
  • Publication number: 20240058580
    Abstract: A substantially metallic magnetic resonance Imaging (MRI)-tracked injection needle device is disclosed. The magnetic resonance Imaging (MRI)-tracked injection needle device includes a luer syringe; an electrical connector that is at least partially housed in an interior space of a distal end of the luer syringe; an electrical adaptor coupled to the electrical connector; and an injection needle comprising a shaft having a needle distal end and a needle proximal end, the shaft comprising concentric metal tubes comprising an inner metal tube and an outer metal tube, the needle proximal end coupled to the electrical adaptor and the needle distal end comprising one or more tracking coils arranged between the inner metal tube and the outer metal tube.
    Type: Application
    Filed: December 13, 2021
    Publication date: February 22, 2024
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Akila VISWANATHAN, Yue CHEN, Anthony GUNDERMAN, Henry R. HALPERIN, Ehud J. SCHMIDT, Ryan BAUMGAERTNER, Marc MORCOS
  • Patent number: 11903751
    Abstract: A method and system is disclosed for analyzing and evaluating image data of a subject. The image data can be collected with an imaging system in a selected manner and/or motion. More than one projection may be combined to generate and create a selected view of the subject. The evaluation may be a location determination of a member positioned within the subject.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: February 20, 2024
    Assignees: Medtronic Navigation, Inc., The Johns Hopkins University
    Inventors: Patrick A. Helm, Jeffrey H. Siewerdsen, Ali Uneri
  • Patent number: 11908769
    Abstract: Example superlattice structures and methods for thermoelectric devices are provided. An example structure may include a plurality of superlattice periods. Each superlattice period may include a first material layer disposed adjacent to a second material layer. For each superlattice period, the first material layer may be formed of a first material and the second material layer may be formed of a second material. The plurality of superlattice periods may include a first superlattice period and a second superlattice period. A thickness of a first material layer of the first superlattice period may be different than a thickness of a first material layer of the second superlattice period.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: February 20, 2024
    Assignee: The Johns Hopkins University
    Inventors: Rama Venkatasubramanian, Jonathan M. Pierce, Geza Dezsi
  • Publication number: 20240055122
    Abstract: Provided herein are methods of generating models for prognosing cardiovascular outcomes for monitored subjects infected with an etiologic agent (e.g., severe acute respiratory syndrome coronavirus-2 or another etiologic agent). Related methods, systems, and computer program products are also provided.
    Type: Application
    Filed: December 17, 2021
    Publication date: February 15, 2024
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Julie K. SHADE, Ashish DOSHI, Eric SUNG, Allison HAYS, Natalia A. TRAYANOVA
  • Patent number: 11897939
    Abstract: The presently-disclosed subject matter relates to antibodies, compositions, and methods for inhibiting and treating virus infection in the respiratory tract and virus transmission through the respiratory tract. In particular, the presently-disclosed subject matter relates to inhibiting and treating virus infection in a subject using compositions and antibodies that trap viruses in mucus of the respiratory tract, thereby inhibiting transport of virus across or through mucus secretions.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: February 13, 2024
    Assignees: The University of North Carolina at Chapel Hill, The Johns Hopkins University
    Inventors: Samuel Lai, Ying-Ying Wang, Arthi Kannan, Kenetta Nunn, Durai Babu Subramani, Richard Cone, Bing Yang, Justin Mccallen
  • Patent number: 11896679
    Abstract: The presently disclosed subject matter provides compositions and methods for the expression of CRISPR guide RNAs using the H1 promoter. In particular, compositions and methods are provided for the use of the H1 promoter to express CRISPR guide RNA (gRNA) with altered specificity of the 5? nucleotide, as well as use of the H1 promoter sequence as a bidirectional promoter to express Cas9 nuclease and the gRNA simultaneously. Compositions and methods are also provided for the expression and regulation of gRNA expression in vivo through the use of RNA ribozymes and regulatable aptazymes.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: February 13, 2024
    Assignee: The Johns Hopkins University
    Inventors: Vinod Jaskula-Ranga, Donald Zack
  • Publication number: 20240041558
    Abstract: A system for surgical navigation, including an instrument for a medical procedure attached to a camera and having a spatial position relative to the camera, an x-ray system to acquire x-ray images, and multiple fiducial markers detectable by both the camera and x-ray system, having a radio-opaque material arranged as at least one of a line and a point. A computer receives an optical image from the camera and an x-ray image from the x-ray system, identifies fiducial markers visible in both the optical image and x-ray image, determines for each fiducial marker a spatial position relative to the camera based on the optical image and relative to the x-ray system based on the x-ray image, and determines a spatial position for the instrument relative to the x-ray system based on at least the spatial positions relative to the camera and x-ray system.
    Type: Application
    Filed: December 9, 2021
    Publication date: February 8, 2024
    Applicant: The Johns Hopkins University
    Inventors: Jeffrey H. SIEWERDSEN, Niral M. SHETH, Prasad VAGDARGI, Greg M. OSGOOD, Wathudurage Tharindu DE SILVA
  • Publication number: 20240044757
    Abstract: An electrostatic probe for positioning an insect specimen is disclosed herein. The electrostatic probe may include an ion generator, a handling end, and a controller. The controller may be configured to: activate the ion generator to produce a electrostatic field at the handling end, wherein the electrostatic field is to attract a specimen to the handling end or hold the insect specimen at the handling end, and discharge the electrostatic field to cause the insect specimen to be released from the handling end.
    Type: Application
    Filed: August 31, 2020
    Publication date: February 8, 2024
    Applicant: The Johns Hopkins University
    Inventors: Laura Elizabeth Schiffrin SCAVO, Adam C. GOODWIN
  • Patent number: 11892457
    Abstract: Methods of detecting ZNT8 antibodies in serum are described. The methods include proteoliposomes comprising a transmembrane domain (TMD) and a cytosolic domain (CTD) of ZnT8 proteins exposed on the exterior of the proteoliposome; serum comprising antibodies targeting the ZnT8 proteins; and labelled captured autoantibodies that bind to ZnT8 antibodies.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: February 6, 2024
    Assignees: The Johns Hopkins University, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Dax Fu, Chengfeng Merriman, Hongjie Dai, Hao Wan
  • Patent number: 11894515
    Abstract: Gel polymer electrolyte compositions including a cross-linked three-dimensional polymer network and an electrolyte composition comprising an electrolyte and water are disclosed. The gel polymer electrolyte compositions can be included in an aqueous electrochemical cell, in which a gel polymer electrolyte can be positioned between an anode and a cathode. Methods of forming a gel polymer electrolyte in the form of a film, and methods of forming an aqueous electrochemical cell including a gel polymer electrolyte, are also disclosed.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: February 6, 2024
    Assignee: The Johns Hopkins University
    Inventors: Konstantinos Gerasopoulos, Bing Tan, Spencer A. Langevin, Matthew W. Logan, Adam W. Freeman
  • Patent number: 11893149
    Abstract: Provided are systems, compositions and methods that useful in any setting where generating and tracking light is used. The systems, methods and compositions contain as a component flexible, transparent membrane-based materials that include light emitting diodes (LEDs). The LEDs can include or be formed from colloidal quantum dots (CQDs) as an active layer. The CQDs can be formed from solution-processed semiconductor nanocrystals. They have a tunable band gap energy that can be readily tuned by adjusting the size of the nanocrystals. Transparent membrane-based LED arrays exhibit emission wavelength that can be tuned anywhere in the range of 800-2000 nm. The LEDs are highly transparent in the visible wavelength range with the exception of the CQD active layer. The CQD-based LEDs are components of any device or system wherein generating and/or tracking reflected light is utilized, such as in tracing the location and movement of a living individual, or an inanimate object.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: February 6, 2024
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Susanna Thon, Charbel Rizk, Botong Qiu
  • Publication number: 20240038097
    Abstract: A system quantifying clinical skill of a user, comprising: collecting data relating to a surgical task done by a user using a surgical device; comparing the data for the surgical task to other data for another similar surgical task; quantifying the clinical skill of the user based on the comparing of the data for the surgical task to the other data for the other similar surgical task; outputting the clinical skill of the user.
    Type: Application
    Filed: October 10, 2023
    Publication date: February 1, 2024
    Applicant: The Johns Hopkins University
    Inventors: Carol E. REILEY, Gregory D. Hager, Balakrishnan Varadarajan, Sanjeey Pralhad Khudanpur, Rajesh Kumar, Henry C. Lin
  • Publication number: 20240032827
    Abstract: In one example aspect, a system is disclosed that includes an image capture device; a capillaroscope attachable to the image capture device, the capillaroscope including: a light source configured to provide offset light at an angle and location offset from a center horizontal axis and produce oblique remitted light off a patient site; a reverse lens through which the oblique remitted light passes therethrough; and one or more telescopic lenses through which the remitted light passes therethrough to a lens of the image capture device after passing through the reverse lens.
    Type: Application
    Filed: December 17, 2021
    Publication date: February 1, 2024
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Nicholas James DURR, Gregory N. MCKAY
  • Patent number: 11883541
    Abstract: The presently disclosed subject matter provides compositions and methods for administering a nanoparticle or microparticle and a therapeutic agent to the suprachoroidal space in the eye.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: January 30, 2024
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Peter A. Campochiaro, Jordan Green, Jayoung Kim, Jikui Shen
  • Patent number: 11886975
    Abstract: Provided herein are methods of generating models to predict prospective pathology scores of test subjects having a pathology in certain embodiments. Related systems and computer program products are also provided.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: January 30, 2024
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Yong Du, Kevin H. Leung, Martin Gilbert Pomper
  • Publication number: 20240029266
    Abstract: A device may obtain field images of a tissue sample, apply, to the field images, spatial distortion and illumination-based corrections (including corrections for photobleaching of reagents) to derive processed field images, identify, in each processed field image, a primary area including data useful for cell or subcellular component characterization, identify, in the processed field images, areas that overlap with one another, and derive information regarding a spatial mapping of cell(s) and/or sub-cellular components of the tissue sample. Deriving the information may include performing segmentation based on the data included in the primary area of each processed field image, and obtaining flux measurements based on other data included in the overlapping areas.
    Type: Application
    Filed: July 21, 2023
    Publication date: January 25, 2024
    Applicant: The Johns Hopkins University
    Inventors: Janis Marie TAUBE, Sandor SZALAY
  • Patent number: 11878045
    Abstract: The present invention provides a method of inducing cell death by hyperactivation of motility networks.
    Type: Grant
    Filed: November 27, 2020
    Date of Patent: January 23, 2024
    Assignee: The Johns Hopkins University
    Inventors: Peter Devreotes, Huaqing Cai, Marc Edwards, Jun Liu, Thomas Lampert, Yu Long
  • Patent number: 11872318
    Abstract: Nanocrystals, compositions, and methods that aid particle transport in mucus are provided. In some embodiments, the compositions and methods involve making mucus-penetrating particles (MPP) without any polymeric carriers, or with minimal use of polymeric carriers. The compositions and methods may include, in some embodiments, modifying the surface coatings of particles formed of pharmaceutical agents that have a low water solubility. Such methods and compositions can be used to achieve efficient transport of particles of pharmaceutical agents though mucus barriers in the body for a wide spectrum of applications, including drug delivery, imaging, and diagnostic applications. In certain embodiments, a pharmaceutical composition including such particles is well-suited for administration routes involving the particles passing through a mucosal barrier.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: January 16, 2024
    Assignee: The Johns Hopkins University
    Inventors: Alexey Popov, Elizabeth M. Enlow, James Bourassa, Colin R. Gardner, Hongming Chen, Laura M. Ensign, Samuel K. Lai, Tao Yu, Justin Hanes, Ming Yang