Patents Assigned to Johns Hopkins University
  • Patent number: 11784413
    Abstract: An antenna includes a waveguide defined by a gap between a backplane with radial support ribs and a facesheet, a teardrop-shaped feed pin at a center of the backplane, and a foam spacer between the backplane and facesheet. An outward facing side of the facesheet includes thermal paint. The facesheet includes pairs of through-hole slots for releasing portions of a wave of radiation in the waveguide to generate a transmit-beam or to receive the receive-beam to generate the wave of radiation. The pairs may be disposed as a spiral array about a center of the facesheet. Each of the pairs may include first and second slots. A length of the second slot is oriented approximately perpendicular to a length of the first slot. Dispositions of the slots are set by a computer process. The dispositions optimize a trade-off between transmit and receive gains.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: October 10, 2023
    Assignee: The Johns Hopkins University
    Inventor: Matthew G. Bray
  • Patent number: 11779682
    Abstract: The presently disclosed subject matter provides a scalable and electrostretching approach for generating hydrogel microfibers exhibiting uniaxial alignment from aqueous polymer solutions. Such hydrogel microfibers can be generated from a variety of water-soluble natural polymers or synthetic polymers. The hydrogel microfibers can be used for controlled release of bioactive agents. The internal uniaxial alignment exhibited by the presently disclosed hydrogel fibers provides improved mechanical properties to hydrogel microfibers, and contact guidance cues and induces alignment for cells seeded on or within the hydrogel microfibers.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: October 10, 2023
    Assignee: The Johns Hopkins University
    Inventors: Sharon Gerecht, Shuming Zhang, Sebastian F. Barreto Ortiz, Hai-Quan Mao
  • Patent number: 11779555
    Abstract: The presently disclosed subject matter provides methods, compositions, and kits for the treatment of cancer using a combination treatment comprising a locally administered chemotherapy and an immunotherapeutic agent. The presently disclosed subject matter also provides methods of promoting the combination treatment and instructing a patient to receive the combination treatment are also provided, as well immunotherapeutic, non-immunosuppressive compositions comprising the combination treatment, and methods of using the immunotherapeutic, non-immunosuppressive compositions for treating cancer.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: October 10, 2023
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Dimitrios Mathios, Betty Tyler, Drew Pardoll, Henry Brem, Michael Lim
  • Patent number: 11771703
    Abstract: The instant disclosure provides methods and compositions for the diagnosis, treatment and prevention of a TGF?2-associated disease, disorder and/or condition, including, e.g., Scleroderma, other fibrotic disease, grade 4 glioblastoma (GBM) and/or Primary Open-Angle Glaucoma (POAG). The disclosure further provides pharmaceutical compositions and kits for the diagnosis, treatment and prevention of TGF?2-associated diseases, disorders and/or conditions.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: October 3, 2023
    Assignee: The Johns Hopkins University
    Inventors: Harry C. Dietz, Joseph Shin
  • Patent number: 11773440
    Abstract: The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: October 3, 2023
    Assignee: The Johns Hopkins University
    Inventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac A. Kinde
  • Patent number: 11773182
    Abstract: The presently disclosed subject matter provides compositions and methods comprising isolated antibodies that can recognize human prostate-specific membrane antigen (PSMA). The presently disclosed antibodies can be used to for imaging and therapy of PSMA-expressing cancers, such as prostate cancer, in a subject.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: October 3, 2023
    Assignees: The Johns Hopkins University, Institute of Biotechnology CAS, V.V.I.
    Inventors: Cyril Barinka, Martin G. Pomper, Zora Novakova, Catherine A. Foss
  • Patent number: 11771807
    Abstract: A soft tissue device can incorporate a composite material comprising a gel and at least one nanostructure disposed within the gel. A soft tissue device can further incorporate biologically active materials such as cells, tissues. A method for healing a soft tissue defect while promoting soft tissue regeneration can include applying a soft tissue device to a soft tissue defect, wherein the composite material includes a gel and a nanostructure disposed within the gel. A method for manufacturing a soft tissue device for use in healing soft tissue defects can include providing a gel, disposing nanofibers within the gel, and a biologically active material.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: October 3, 2023
    Assignee: The Johns Hopkins University
    Inventors: Sashank Reddy, Russell Martin, Xiaowei Li, Calvin Chang, Kevin Colbert, Hai-Quan Mao
  • Publication number: 20230307130
    Abstract: Provided herein are methods of distinguishing between meiotic- and mitotic-origin aneuploidies in certain embodiments. Related systems and computer program products are also provided.
    Type: Application
    Filed: November 5, 2021
    Publication date: September 28, 2023
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Daniel ARIAD, Rajiv MCCOY, Manuel VIOTTI
  • Patent number: 11766488
    Abstract: The presently disclosed subject matter provides compositions and methods comprising improvements of a CRISPR system (e.g. CRISPR associated (Cas) 9 (CRISPR-Cas9, non-Cas9 CRISPR systems). Such compositions may comprise modifications to the H1 promoter region, addition of 5?UTR modifications, different orthologous sequences of the H1 promoter, novel compact bidirectional promoter sequences with both pol II and pol III activity, addition of Kozak consensus sequences, termination sequences, addition of conditional pol II/pol III bidirectional promoter expression, addition of a donor template sequence for correcting mutations, or combinations thereof. Other aspects of the invention relate to modifications to Cas9 through post-transcriptional cell-cycle regulation fusions, engineered partial target sites such that the nuclease can bind without DNA cleavage, auto-regulation sites, and N-terminal modifications to modulate half-life.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: September 26, 2023
    Assignee: The Johns Hopkins University
    Inventors: Vinod Jaskula-Ranga, Donald Zack, Derek Welsbie
  • Patent number: 11766478
    Abstract: Described herein are methods comprising administering to a mammalian subject an effective amount of an annexin chimeric fusion protein, wherein the annexin chimeric fusion protein comprises at least one immunogenic antigen, thereby enhancing the antigen specific immune response relative to administration of the immunogenic antigen alone. Methods and kits for treating or preventing recurrence of hyper proliferating diseases, e.g., cancer, are described. A method may comprise priming a mammal by administering to the mammal an effective amount of a chemotherapeutic agent and boosting the mammal by administering to the mammal an effective amount of an annexin chimeric fusion.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: September 26, 2023
    Assignee: The Johns Hopkins University
    Inventors: Tzyy-Choou Wu, Chien-Fu Hung
  • Patent number: 11759444
    Abstract: The disclosure provides methods of treating cancer in a subject or preventing a relapse or reducing the incidence of relapse of cancer in a subject in remission, comprising administering to the subject: (a) a therapeutically effective amount of an immunotherapeutic agent, e.g., an immune checkpoint blockade therapy, an adoptive cellular therapy, a marrow-infiltrating lymphocytes, an adenosine A2aR inhibitor, or an antibody; and (b) a compound having formula (I): and the pharmaceutically acceptable salts thereof, wherein R1, R2, R2?, and X are as defined as set forth in the specification. Compounds having formula (I) are prodrugs that release glutamine analogs, e.g., 6-diazo-5-oxo-L-norleucine (DON).
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: September 19, 2023
    Assignees: The Johns Hopkins University, Ústav organické chemie a biochemie AV {hacek over (C)}R, v.v.i.
    Inventors: Barbara Slusher, Jonathan Powell, Lukas Tenora, Pavel Majer, Andrej Jancarik, Robert Leone, Judson Englert
  • Patent number: 11759466
    Abstract: Methods for treating a Human Immunodeficiency Virus (HIV) infection comprising administering to a subject in need of treatment thereof an effective amount of a small molecule nSMase2 inhibitor.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: September 19, 2023
    Assignee: The Johns Hopkins University
    Inventors: Norman Haughey, Barbara Slusher, Camilo Rojas
  • Publication number: 20230290954
    Abstract: A composition for producing electrodes for lithium-sulfur batteries includes particles having a metal-organic framework structure and composition that define voids within the metal-organic framework structure; sulfur loaded into at least some of the voids defined by the metal-organic framework structure of the particles; graphene flakes obtained by polymer enhanced solvent exfoliation; and polymer residue from the polymer enhanced solvent exfoliation. A method of producing a composite electrode for a lithium-sulfur battery according to an embodiment of the current invention includes obtaining a composition according to an embodiment of the current invention and applying the composition to a substrate. An electrode for a lithium-sulfur battery includes a layer having the composition. A lithium-sulfur battery according to an embodiment of the current invention includes the electrode.
    Type: Application
    Filed: July 22, 2021
    Publication date: September 14, 2023
    Applicants: The Johns Hopkins University, Northwestern University
    Inventors: Avery E. Baumann, Van Sara Thoi, Julia R. Downing, Mark C. Hersam
  • Patent number: 11756203
    Abstract: A device may obtain field images of a tissue sample, apply, to the field images, spatial distortion and illumination-based corrections (including corrections for photobleaching of reagents) to derive processed field images, identify, in each processed field image, a primary area including data useful for cell or subcellular component characterization, identify, in the processed field images, areas that overlap with one another, and derive information regarding a spatial mapping of cell(s) and/or sub-cellular components of the tissue sample. Deriving the information may include performing segmentation based on the data included in the primary area of each processed field image, and obtaining flux measurements based on other data included in the overlapping areas.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: September 12, 2023
    Assignee: The Johns Hopkins University
    Inventors: Janis Marie Taube, Sandor Szalay
  • Patent number: 11753468
    Abstract: Blockade of immune checkpoints such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) shows promise in patients with cancer. Inhibitory antibodies directed at these receptors have been shown to break immune tolerance and promote anti-tumor immunity. These agents work particularly well in patients with a certain category of tumor. Such tumors may be particularly susceptible to treatment because of the multitude of neoantigens which they produce.
    Type: Grant
    Filed: September 26, 2022
    Date of Patent: September 12, 2023
    Assignee: The Johns Hopkins University
    Inventors: Luis Diaz, Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Dung Le, Drew M. Pardoll, Suzanne L. Topalian
  • Patent number: 11753765
    Abstract: Self-adaptive systems, uses of the systems, and methods for adapting one or more properties of a material are disclosed.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: September 12, 2023
    Assignee: The Johns Hopkins University
    Inventors: Sung Hoon Kang, Santiago Orrego
  • Patent number: 11758100
    Abstract: A device may provide, to a camera and a projector of a portable projection mapping device, first instructions for calibrating the camera and the projector, and may receive, based on the first instructions, calibration parameters for the camera and the projector. The device may calculate a stereo calibration between the camera and the projector based on the calibration parameters, and may provide, to the camera, second instructions for recognizing a reference instrument associated with the portable projection mapping device. The device may receive, based on the second instructions, binocular images, and may determine additional parameters based on the binocular images. The device may determine recognition parameters for recognizing the reference instrument, based on the binocular images and the additional parameters.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: September 12, 2023
    Assignee: The Johns Hopkins University
    Inventors: Mehran Armand, Shuya Liu, Wei-Lun Huang, Austin Shin
  • Publication number: 20230278222
    Abstract: A robotic system for remote operation of human-controllable equipment includes a remotely operable robotic subsystem configured to be at least one of mounted on or arranged adjacent to the human-controllable equipment to be controlled, and a remote controller that is configured to be operated by a human. The remote controller emulates a control representation of the human-controllable equipment such that a human can provide commands using the control representation. The remotely operable robotic subsystem is configured to receive commands from the remote controller to thereby operate the human-controllable equipment.
    Type: Application
    Filed: August 2, 2021
    Publication date: September 7, 2023
    Applicants: The Johns Hopkins University, University of Maryland
    Inventors: Russell H. Taylor, Axel Kriege, Peter Kazanides, Balazs Vagvolgyi, Anton Deguet, Mikhail Khrenov
  • Patent number: 11747338
    Abstract: The present invention describes an integrated apparatus that enables identification of invasive tumor cells directly from a specimen. The methods using the apparatus can be used to prognose or predict the survivability of the cancer in a subject and the risk of recurrence of the cancer in the subject after treatment. The methods disclosed herein can be used to determine which chemotherapeutic or other therapies most strongly inhibit the tumor cells invasiveness as a form of personalized therapy.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: September 5, 2023
    Assignee: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Konstantinos Konstantopoulos, Colin Paul, Alfredo Quinones-Hinojosa, Sagar Ramesh Shah, Alejandro Ruiz-Valls, Christopher Yankaskas, Juan Carlos Martinez-Gutierrez, Bin Sheng Wong
  • Patent number: 11745165
    Abstract: The present invention provide novel immunofiber compositions for protein or peptide purification and simple and cost-efficient methods and systems using these compositions. In some embodiments, the immunofibers comprise a customized Z-33 peptide derived from Staphylococcus aureus Protein A which is used to construct immuno-amphiphile molecules that assemble into immunofibers in aqueous solution with bioactive epitopes on the surface and have peptide or protein binding ability.
    Type: Grant
    Filed: August 17, 2018
    Date of Patent: September 5, 2023
    Assignees: THE JOHNS HOPKINS UNIVERSITY, BRISTOL-MYERS SQUIBB COMPANY
    Inventors: Honggang Cui, Yi Li, Lye Lin Lock, XuanKuo Xu, Zhengjian Li