Patents Assigned to Johnson Matthey PLC
  • Publication number: 20130039828
    Abstract: A catalyst structure suitable for use in an ammonia oxidation process is described including a plurality of shaped catalyst units supported on one or more members in a spaced relationship that allows the structure to flex.
    Type: Application
    Filed: January 13, 2011
    Publication date: February 14, 2013
    Applicant: JOHNSON MATTHEY PLC
    Inventor: Duncan Roy Coupland
  • Publication number: 20130023593
    Abstract: A method for preparing a silica-modified catalyst support is described including: (I) applying an alkyl silicate to the surface of a porous support material in an amount to produce a silica content of the silica-modified catalyst support, expressed as Si, in the range 0.25 to 15% by weight, (ii) optionally drying the resulting silicate-modified support, (iii) treating the support with water, (iv) drying the resulting water-treated support, and (v) calcining the dried material to form the silica-modified catalyst support.
    Type: Application
    Filed: January 13, 2011
    Publication date: January 24, 2013
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Alejandro Martin Antonini, Richard John Mercer, Adel Fay Neale
  • Publication number: 20130008175
    Abstract: A process for reducing CO2 emissions from combined cycle power generation processes utilizing a gaseous hydrocarbon feed, which includes splitting the hydrocarbon feed into two portions; a first portion?45% by volume of the feed and a larger portion?55% by volume of the feed, feeding the first portion to an autothermal reforming process to generate a hydrogen-containing gas and a carbon dioxide stream, combining the hydrogen-containing stream with the second portion, combusting the resulting hydrogen-containing fuel stream with oxygen containing gas in a gas turbine to generate electrical power and passing the exhaust gas mixture from the gas turbine to a heat recovery steam generation system that feeds one or more steam turbines to generate additional electrical power. The captured carbon dioxide stream may be fed to storage or enhanced oil recovery processes. The process may be retrofitted into existing combined cycle processes.
    Type: Application
    Filed: November 30, 2010
    Publication date: January 10, 2013
    Applicant: JOHNSON MATTHEY PLC
    Inventor: Mark McKenna
  • Publication number: 20130000320
    Abstract: A process for the conversion of a hydrocarbon to CO2 and electrical power is described which includes subjecting a gas mixture of a hydrocarbon feed stream and steam to an integrated reforming process including stages of steam reforming in a gas-heated reformer and secondary reforming to generate a reformed gas mixture, increasing the hydrogen content of the reformed gas mixture by subjecting it to one or more water-gas-shift stages, cooling the resulting hydrogen-enriched reformed gas and separating condensed water therefrom, passing the resulting de-watered hydrogen-enriched reformed gas to one or more stages of carbon dioxide separation to recover carbon dioxide, combusting the remaining hydrogen-containing fuel stream with an oxygen containing gas in a gas turbine to generate electrical power and passing the exhaust gas mixture from the gas turbine to a heat recovery steam generation system that feeds one or more steam turbines to generate additional electrical power.
    Type: Application
    Filed: November 30, 2010
    Publication date: January 3, 2013
    Applicant: Johnson Matthey PLC
    Inventors: Mark McKenna, Peter Edward James Abbott, Peter William Farnell
  • Patent number: 8343354
    Abstract: A process for desulfurizing a process fluid includes contacting a sulphur compound containing feed stream with an absorbent including an iron, copper or nickel compound capable of forming a metal sulphide, a support material, a first binder and a second binder where the first binder is a cement binder and the second binder is a high aspect ratio aluminosilicate clay binder having an aspect ratio >2 and a ratio of the first binder to the second binder is in the range 2:1 to 3:1.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: January 1, 2013
    Assignee: Johnson Matthey PLC
    Inventor: Matthew John Cousins
  • Patent number: 8330106
    Abstract: The invention comprises a radiation and contamination monitor for the monitoring of radiation and contamination. The instrument is intrinsically safe and comprises a radiation detector, a power source, a signal processor and a display, said power source, signal processor and display being housed within a sealed instrument housing formed from a non-metallic material which is resistant to static discharge. The detector may be housed in a detachable housing for contamination monitoring.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: December 11, 2012
    Assignee: Johnson Matthey PLC
    Inventors: Darrell Green, Colin Cunningham
  • Patent number: 8314047
    Abstract: A process for the preparation of a desulfurization material includes: (i) forming a zinc/aluminium hydrotalcite composition, and (ii) calcining the composition to form a zinc oxide/alumina material, in which one or more nickel compounds are included in the hydrotalcite formation step, and/or are impregnated onto the hydrotalcite composition and/or the calcined zinc oxide/alumina material, and the resulting composition dried and recovered.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: November 20, 2012
    Assignee: Johnson Matthey PLC
    Inventors: Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
  • Publication number: 20120256086
    Abstract: The invention provides an apparatus and method for measuring a property of a gas, such as the amount of liquid in a stream of the gas. The apparatus comprises a source of beta particles (20), a detector (23) capable of detecting beta particles, means (18) to support said source and said detector spaced apart from each other such that gas may enter the space between the source and detector and that the source is positioned to emit beta particles towards said detector; wherein said detector comprises a scintillation material in optical communication with a photodetector (26), and means (24) to physically isolate said photodetector from said gas.
    Type: Application
    Filed: September 28, 2010
    Publication date: October 11, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Magne Kjetil Husebo, Tor Magnus Saevareide
  • Publication number: 20120238792
    Abstract: The invention is a process for the production of a hydrocarbon product including contacting an oxygenated aromatic feedstock, in the presence of hydrogen, with a catalyst composition including: a) a metal hydrogenation catalyst and b) a solid acid catalyst which is active for the deoxygenation of oxygenated hydrocarbons. The process is useful for the conversion of pyrolysis oils and other products derived from biomass and plastics recycling etc, into fuels and chemical feedstocks.
    Type: Application
    Filed: July 29, 2010
    Publication date: September 20, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Michael John Watson, David Davis, Emily Fairnington Douglas
  • Publication number: 20120232322
    Abstract: A process for desulphurising hydrocarbons includes the steps of (i) passing a mixture of hydrocarbon and hydrogen over a hydrodesulphurisation catalyst to convert organosulphur compounds present in the hydrocarbon to hydrogen sulphide, (ii) passing the resulting mixture over a hydrogen sulphide sorbent including zinc oxide to reduce the hydrogen sulphide content of the mixture and (iii) passing the hydrogen sulphide-depleted mixture over a further desulphurisation material, where the further desulphurisation material includes one or more nickel compounds, a zinc oxide support material, and optionally one or more promoter metal compounds selected from one or more compounds of iron, cobalt, copper and precious metals, the desulphurisation material having a nickel content in the range 0.3 to 20% by weight and a promoter metal content in the range 0 to 10% by weight.
    Type: Application
    Filed: September 2, 2010
    Publication date: September 13, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Gordon Edward Wilson, Norman Macleod, Elaine Margaret Vass, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
  • Patent number: 8263522
    Abstract: A method for converting a supported metal nitrate into the corresponding supported metal oxide comprises heating the metal nitrate to effect its decomposition under a gas mixture that contains nitrous oxide and has an oxygen content of <5% by volume. The method provides very highly dispersed metal oxide on the support material. The metal oxide is useful as a catalyst or as a catalyst precursor.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: September 11, 2012
    Assignee: Johnson Matthey PLC
    Inventors: Jelle Rudolf Anne Sietsma, Adrianus Jacobus Van Dillen, Petra Elisabeth De Jongh, Krijn Pieter De Jong
  • Publication number: 20120223274
    Abstract: A process for increasing the hydrogen content of a synthesis gas including hydrogen and carbon oxides and having a carbon monoxide content ?45 mole % on a dry-gas basis, including the steps of: (i) combining the synthesis gas with steam to form a steam-enriched feed gas mixture (ii) passing the feed gas mixture at an inlet temperature in the range 220-370° C. over an iron-based water-gas shift catalyst to form a hydrogen-enriched shifted gas mixture having a carbon monoxide content ?10 mole % on a dry gas basis, and (iii) recovering the hydrogen-enriched shifted gas mixture, where a portion of the hydrogen-enriched shifted gas mixture is recycled to the feed gas mixture.
    Type: Application
    Filed: October 14, 2010
    Publication date: September 6, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Graham Charles Hinton, Richard Ian Johnston, John David Pach, Hsing-Chuan Yang, Ian Richard Barton
  • Publication number: 20120202681
    Abstract: A carbon oxides conversion process includes reacting a carbon oxide containing process gas containing hydrogen and/or steam and containing at least one of hydrogen and carbon monoxide in the presence of a catalyst including shaped units formed from a reduced and passivated catalyst powder, the powder including copper in the range 10-80% by weight, zinc oxide in the range 20-90% by weight, alumina in the range 5-60% by weight and optionally one or more oxidic promoter compounds selected from compounds of Mg, Cr, Mn, V, Ti, Zr, Ta, Mo, W, Si and rare earths in the range 0.01-10% by weight, wherein said shaped units have a reduced to as-made mean horizontal crush strength ratio of ?0.5:1 and a copper surface area above 60 m2/g Cu.
    Type: Application
    Filed: May 24, 2010
    Publication date: August 9, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Colin William Park, Brian Peter Williams, Graeme Douglas Campbell, David Allan Buckworth
  • Publication number: 20120199538
    Abstract: A process for desulfurizing a process fluid includes contacting a sulphur compound containing feed stream with an absorbent including an iron, copper or nickel compound capable of forming a metal sulphide, a support material, a first binder and a second binder where the first binder is a cement binder and the second binder is a high aspect ratio aluminosilicate clay binder having an aspect ratio >2 and a ratio of the first binder to the second binder is in the range 2:1 to 3:1.
    Type: Application
    Filed: April 17, 2012
    Publication date: August 9, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventor: Matthew John Cousins
  • Patent number: 8236262
    Abstract: A particulate desulfurization material includes one or more nickel compounds, a zinc oxide support material, and one or more alkali metal compounds wherein the nickel content of the material is in the range 0.3 to 10% by weight and the alkali metal content of the material is in the range 0.2 to 10% by weight. A method of making the desulfurization material includes the steps: (i) contacting a nickel compound with a particulate zinc support material and an alkali metal compound to form an alkali-doped composition, (ii) shaping the alkali-doped composition, and (iii) drying, calcining, and optionally reducing the resulting material. The desulfurization material may be used to desulfurize hydrocarbon gas streams with reduced levels of hydrocarbon hydrogenolysis.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: August 7, 2012
    Assignee: Johnson Matthey PLC
    Inventors: Gavin Potter, Gordon Edward Wilson, Norman Macleod, Antonio Chica Lara, Avelino Corma Canos, Yonhy Saavedra Lopez
  • Publication number: 20120190758
    Abstract: A process for the synthesis of hydrocarbons by the Fisher Tropsch process includes reacting a mixture of carbon monoxide and hydrogen at elevated temperature and pressure in the presence of a catalyst including 15-50% wt cobalt at least partially in elemental form, supported on an oxidic support of aluminium, oxygen and 0.5-10% wt lithium, where the oxidic support includes lithium oxides and >75% wt of the lithium oxides are lithium aluminate spinel, LiAl5O8.
    Type: Application
    Filed: April 4, 2012
    Publication date: July 26, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Peter Trenton BISHOP, Peter Richard ELLIS
  • Publication number: 20120184038
    Abstract: A method of tracing an aqueous liquid, particularly an aqueous urea used for addition to a selective catalytic reduction system to remove NOx from diesel exhaust, includes adding a tracer comprising a pre-determined amount of a phenol to the liquid. The liquid can subsequently be identified by reacting a sample with a reagent containing a predetermined amount of 4-aminoantipyrine in the presence of an initiating compound such that the reaction between the reagent and a phenol in the liquid produces a chromophore and measuring the absorbance of the resulting solution of the chromophore.
    Type: Application
    Filed: March 20, 2012
    Publication date: July 19, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Darrell Green, Andrew West
  • Publication number: 20120160368
    Abstract: A catalyst unit suitable for loading into a tube in a reactor includes a plurality of catalyst particles incorporated within a removable solid matrix, said unit in the form of an elongate body in which the particles are packed together such that the volume shrinkage upon removal of the removable matrix is ?20%. The catalyst particles preferably comprise one or more metals selected from the group consisting of Fe and Co in oxidic or reduced form. The units are particularly suitable for loading catalyst into tubes in a Fischer-Tropsch reactor.
    Type: Application
    Filed: May 25, 2010
    Publication date: June 28, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Mark McKenna, Alejandro Martin Antonini
  • Publication number: 20120165418
    Abstract: A methanol synthesis process includes reacting a process gas containing hydrogen, carbon dioxide and carbon monoxide over a catalyst including shaped units formed from a reduced and passivated catalyst powder the powder including copper in the range 10-80% by weight, zinc oxide in the range 20-90% by weight, alumina in the range 5-60% by weight and optionally one or more oxidic promoter compounds selected from compounds of Mg, Cr, Mn, V, Ti, Zr, Ta, Mo, W, Si and rare earths in the range 0.01-10% by weight, to form a product gas, and condensing methanol, water and oxygenate by-products therefrom, wherein the total oxygenate by-product level in the condensate is below 500 ppm.
    Type: Application
    Filed: May 24, 2010
    Publication date: June 28, 2012
    Applicant: JOHNSON MATTHEY PLC
    Inventors: Colin William Park, Brian Peter Williams, Gordon James Kelly, Terence James Fitzpatrick
  • Patent number: 8197695
    Abstract: An absorbent composition suitable for removing mercury, arsenic or antimony from fluid streams includes 5-50% by weight of a particulate sulphided copper compound, 30-90% by weight of a particulate support material, and the remainder one or more binders, wherein the metal sulphide content of the absorbent, other than copper sulphide, is below 5% by weight.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: June 12, 2012
    Assignee: Johnson Matthey PLC
    Inventors: Matthew John Cousins, Robert Logan, Christopher John Young