Patents Assigned to Johnson Matthey PLC
  • Patent number: 9156708
    Abstract: A method of tracing an aqueous liquid, particularly an aqueous urea used for addition to a selective catalytic reduction system to remove NOx from diesel exhaust, includes adding a tracer comprising a pre-determined amount of a phenol to the liquid. The liquid can subsequently be identified by reacting a sample with a reagent containing a predetermined amount of 4-aminoantipyrine in the presence of an initiating compound such that the reaction between the reagent and a phenol in the liquid produces a chromophore and measuring the absorbance of the resulting solution of the chromophore.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: October 13, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Darrell Green, Andrew West
  • Patent number: 9156707
    Abstract: A method of tracing an aqueous liquid, particularly an aqueous urea used for addition to a selective catalytic reduction system to remove NOx from diesel exhaust includes adding a tracer comprising a pre-determined amount of a phenol to the liquid. The liquid can subsequently be identified by reacting a sample with a reagent containing a predetermined amount of 4-aminoantipyrine in the presence of an initiating compound such that the reaction between the reagent and a phenol in the liquid produces a chromophore and measuring the absorbance of the resulting solution of the chromophore.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: October 13, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Darrell Green, Andrew West
  • Patent number: 9127977
    Abstract: The invention provides a detector assembly for use in a nucleonic level gauge comprising: a) at least one radiation detector; b) electronic apparatus for controlling the at least one detector and processing the electronic signals produced by the at least one detector; and c) a photomultiplier; wherein all of said components (a)-(c) are capable of being enclosed in an elongate, radiation-permeable housing having a cross-sectional area which is substantially uniform along the length of the housing. A detector apparatus may contain a plurality of such detector assemblies contained within a single housing. The detector is preferably an elongate plastic scintillator.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: September 8, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Paul David Featonby, Alan Roy Jones, Sara Hillary Margaret Gibson
  • Patent number: 9102534
    Abstract: A process for reducing CO2 emissions from combined cycle power generation processes utilizing a gaseous hydrocarbon feed, which includes splitting the hydrocarbon feed into two portions; a first portion ?45% by volume of the feed and a second portion ?55% by volume of the feed, feeding the first portion to an autothermal reforming process to generate a hydrogen-containing gas and a carbon dioxide stream, combining the hydrogen-containing stream with the second portion, combusting the resulting hydrogen-containing fuel stream with oxygen containing gas in a gas turbine to generate electrical power and passing the exhaust gas mixture from the gas turbine to a heat recovery steam generation system that feeds one or more steam turbines to generate additional electrical power. The captured carbon dioxide stream may be fed to storage or enhanced oil recovery processes. The process may be retrofitted into existing combined cycle processes.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: August 11, 2015
    Assignee: Johnson Matthey PLC
    Inventor: Mark McKenna
  • Publication number: 20150191353
    Abstract: A catalyst structure suitable for use in an ammonia oxidation process is described including a plurality of shaped catalyst units supported on one or more members in a spaced relationship that allows the structure to flex.
    Type: Application
    Filed: February 10, 2015
    Publication date: July 9, 2015
    Applicant: Johnson Matthey PLC
    Inventor: Duncan Roy COUPLAND
  • Patent number: 9056295
    Abstract: A method for installing a monitoring device with the simultaneous loading of a particulate catalyst into a vertical catalyst tube includes (i) introducing a monitoring device into the tube, (ii) introducing monitoring device alignment apparatus into the tube, (iii) introducing catalyst loading apparatus into the tube, (iv) loading catalyst particles into the top of the tube whereinafter they contact said catalyst loading apparatus as they pass down the tube, forming a uniform bed of catalyst beneath said catalyst loading apparatus and alignment apparatus and around said monitoring device, and (v) simultaneously removing the catalyst loading apparatus and alignment apparatus from the catalyst tube in timed relationship to the catalyst loading. The monitoring device alignment apparatus includes a ring member and two or more spacing members affixed to the ring member such that the ring member and the monitoring device are centrally positioned within the tube.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: June 16, 2015
    Assignee: Johnson Matthey PLC
    Inventors: John Robert Brightling, Jumal Ahmad Shah
  • Patent number: 9057036
    Abstract: A process for reducing the thiophene content in a synthesis gas mixture, comprises the steps of (i) passing a synthesis gas mixture comprising hydrogen and carbon oxides and containing thiophene over a copper-containing sorbent disposed in a sorbent vessel at an inlet temperature in the range 200-280° C., (ii) withdrawing a thiophene depleted synthesis gas containing methanol from the sorbent vessel, and (iii) adjusting the temperature of the methanol-containing thiophene-depleted synthesis gas mixture. The resulting gas mixture may be used for production of chemicals, e.g. methanol production or for the Fischer-Tropsch synthesis of liquid hydrocarbons, for hydrogen production by using water gas shift, or for the production of synthetic natural gas.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: June 16, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Peter Edward James Abbott, Norman Macleod, Gordon Edward Wilson
  • Patent number: 9035259
    Abstract: An instrument adapted for the determination of fluid levels within a vessel by the comparison of the density of the fluid along the length of the instrument, said instrument comprising: (i) at least one generally linear source array comprising a plurality of sources of penetrating radiation, shielding and collimation means and a source supporting structure for supporting the sources and shielding and collimation means in a linear array (ii) at least one generally linear detector array comprising a plurality of radiation detectors, supported on a detector support structure, capable of detecting radiation emitted by the sources, and (iii) means to position the source and a respective detector array such that (a) radiation emitted from each of the sources is capable of following a linear path from the source, through the vessel and material to at least a respective one of the detectors forming a part of the respective detector array, and (b) the linear axis of the source array and the linear axis of its respecti
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: May 19, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Paul David Featonby, Peter Jackson, Benjamin Metcalfe, Thomas John Partington
  • Patent number: 9017642
    Abstract: A process for reducing free oxygen in a hydrocarbon gas stream comprises the steps of (i) forming a gas mixture containing hydrogen from a hydrocarbon, (ii) mixing the hydrogen gas mixture with a gaseous hydrocarbon stream containing free oxygen, and (iii) passing the resulting hydrocarbon gas mixture over a conversion catalyst that converts at least a portion of the free oxygen present in the gaseous hydrocarbon to steam.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: April 28, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Peter John Herbert Carnell, Martin Fowles, Raymond Anthony Hadden, Suzanne Rose Ellis
  • Patent number: 8980785
    Abstract: A catalyst structure suitable for use in an ammonia oxidation process is described including a plurality of shaped catalyst units supported on one or more members in a spaced relationship that allows the structure to flex.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: March 17, 2015
    Assignee: Johnson Matthey PLC
    Inventor: Duncan Roy Coupland
  • Patent number: 8969240
    Abstract: A sorbent, suitable for removing heavy metals, particularly mercury, from fluid streams containing a reductant such as hydrogen and/or carbon monoxide, is in the form of a shaped unit containing ?0.1% by weight in total of heavy metal selected from mercury, arsenic, lead, cadmium and antimony, and 4-75% by weight of copper in the form of one or more reduced copper sulphides which have a sulphur to copper atomic ratio of ?0.6:1.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: March 3, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Lucy Jane Hetherington, Matthew John Cousins
  • Patent number: 8957117
    Abstract: A methanol synthesis process includes reacting a process gas containing hydrogen, carbon dioxide and carbon monoxide over a catalyst including shaped units formed from a reduced and passivated catalyst powder the powder including copper in the range 10-80% by weight, zinc oxide in the range 20-90% by weight, alumina in the range 5-60% by weight and optionally one or more oxidic promoter compounds selected from compounds of Mg, Cr, Mn, V, Ti, Zr, Ta, Mo, W, Si and rare earths in the range 0.01-10% by weight, to form a product gas, and condensing methanol, water and oxygenate by-products therefrom, wherein the total oxygenate by-product level in the condensate is below 500 ppm.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: February 17, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Colin William Park, Brian Peter Williams, Gordon James Kelly, Terence James Fitzpatrick
  • Patent number: 8956428
    Abstract: A process for treating offshore natural gas includes processing the natural gas on an off-shore processing facility by, (i) liquefying and fractionating the natural gas to generate a liquefied natural gas stream and a higher hydrocarbon stream, (ii) vaporizing at least a portion of the higher hydrocarbon stream, (iii) passing the vaporized higher hydrocarbon stream and steam over a steam reforming catalyst to generate a reformed gas mixture comprising methane, steam, carbon oxides and hydrogen, (iv) passing the reformed gas mixture over a methanation catalyst to generate a methane rich gas, and (v) combining the methane-rich gas with the natural gas prior to the liquefaction step.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: February 17, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Peter John Herbert Carnell, Ginny Yuen Che Ng
  • Patent number: 8945497
    Abstract: The invention concerns a process for the oxidation of organic compounds contained in a gas stream and comprises the step of introducing the gas stream containing the organic compounds together with sufficient oxygen to effect the desired amount of oxidation into an oxidation reactor containing an oxidation catalyst and maintaining the temperature of said gas stream at a temperature sufficient to effect oxidation, characterised in that the oxidation catalyst contains at least 0.01% by weight of ruthenium, cobalt or manganese.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: February 3, 2015
    Assignee: Johnson Matthey PLC
    Inventors: Gareth Headdock, Kenneth George Griffin, Peter Johnston, Martin John Hayes
  • Publication number: 20140361222
    Abstract: An opposed axial flow reaction vessel includes a process fluid collection system within the body of the vessel in fluid communication with one or more of the ports; a bed of particulate catalyst or sorbent containing a layer of inert particulate material around the process fluid collection system; and the one or more of the ports are configured such that a process fluid fed to the vessel is passed axially and in the opposite direction through the fixed bed of catalyst or sorbent and is collected by the process fluid collection system disposed centrally within the bed and in fluid communication with one or more of the ports.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Applicant: Johnson Matthey PLC
    Inventors: Charles William Hooper, Michael Peter Roberts
  • Patent number: 8906698
    Abstract: A method of measuring the fluorescence of a fluorescent marker compound dissolved or dispersed in a bulk material includes: (a) measuring a characteristic of the fluorescence of a mixture of said bulk material and said fluorescent marker compound; (b) quenching the fluorescence of the fluorescent marker compound to produce a quenched mixture; (c) measuring the characteristic of the fluorescence of the quenched mixture; (d) comparing the fluorescent characteristic of the mixture with the fluorescent characteristic of the quenched mixture; and (e) correcting the measured fluorescent emission characteristic for the effects of the absorbance of the bulk material. The measurement may be further corrected to account for the absorbance of the material which is also known to have an effect on the measured fluorescence. A method of tagging and identifying a bulk material with a fluorescent marker compound, and an apparatus for carrying out the methods are also described.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: December 9, 2014
    Assignee: Johnson Matthey PLC
    Inventors: Vincent Brian Croud, Duncan William John McCallien, Ian Stuart Edworthy
  • Patent number: 8895931
    Abstract: The invention comprises an apparatus comprising a water-proof housing assembly comprising a housing (20) and a display panel (10, 32), and incorporating an enclosure (30) containing electrical apparatus, wherein said display panel is formed from a clear material (16) encapsulating a visual display (12) and/or a light-source (34) and said apparatus is capable of operating in water at a pressure of at least 300 bar without ingress of water into the enclosure. The apparatus may be used as an instrument or a lighting unit in sub-sea environments. The invention comprises further a light-source attachment for a powered apparatus comprising a light source embedded within a block of clear material (16) and means for mounting said block on the powered apparatus such that a connector connects the light source to a power source within the powered apparatus.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: November 25, 2014
    Assignee: Johnson Matthey PLC
    Inventors: Geoffrey Stuart Howe, David Charles Banks
  • Publication number: 20140332727
    Abstract: A process for the steam reforming of hydrocarbons comprises partially oxidising a feedgas comprising a hydrocarbon feedstock with an oxygen-containing gas in the presence of steam to form a partially oxidised hydrocarbon gas mixture at a temperature >1200° C. and passing the resultant partially oxidised hydrocarbon gas mixture through a bed of steam reforming catalyst, wherein the bed comprises a first layer and a second layer, each layer comprising a catalytically active metal on an oxidic support wherein the oxidic support for the first layer is a zirconia.
    Type: Application
    Filed: May 22, 2014
    Publication date: November 13, 2014
    Applicant: Johnson Matthey PLC
    Inventors: Peter William Farnell, Martin Fowles
  • Patent number: 8859631
    Abstract: A process is described for the conversion of synthesis gas into hydrocarbons including the steps of; (i) passing a synthesis gas comprising hydrogen and carbon monoxide over a cobalt catalyst at elevated temperature and pressure to produce a first reaction product mixture comprising hydrocarbons, steam, carbon monoxide and hydrogen, (ii) condensing and separating water from the first reaction product mixture to produce a de-watered first reaction product mixture, (iii) passing the de-watered first reaction product mixture over a supported ruthenium catalyst at elevated temperature and pressure to produce a second reaction product mixture containing hydrocarbons, and (iv) recovering the hydrocarbons from the second reaction product mixture.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: October 14, 2014
    Assignee: Johnson Matthey PLC
    Inventor: Mark McKenna
  • Patent number: 8852537
    Abstract: A method of adapting an axial flow reaction vessel having opposed ports to an opposed axial flow reaction vessel includes installing a process fluid collection system within the body of the vessel in fluid communication with one or more of the ports; providing the vessel with a bed of particulate catalyst or sorbent containing a layer of inert particulate material around the process fluid collection system; and adapting the feed to the vessel through one or more of the ports such that a process fluid fed to the vessel is passed axially and in the opposite direction through the fixed bed of catalyst or sorbent and is collected by the process fluid collection system disposed centrally within the bed and in fluid communication with one or more of the ports.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: October 7, 2014
    Assignee: Johnson Matthey PLC
    Inventors: Charles William Hooper, Michael Peter Roberts