Patents Assigned to Kent State University
  • Publication number: 20160363799
    Abstract: A frequency controlled electro-optical device includes a substrate having transparent conductive control sections patterned thereon to selectively control the optical state of an electro-optical layer. Each of the control sections are partially electrically isolated from each other by crack lines, which allows for electrical communication between adjacent/proximate control sections to occur. As such, an electrical control signal applied directly to one control section forms an electric field in that control section, and also induces an electrical field in adjacent control sections that are not in direct receipt of the control signal. Therefore, the number of electrical connections required for coupling to a driving circuit to operate the device is minimized, thereby allowing the device to be fabricated with reduced complexity and cost.
    Type: Application
    Filed: June 13, 2016
    Publication date: December 15, 2016
    Applicant: Kent State University
    Inventors: John Lawton West, Da-Wei Lee, Merrill Groom
  • Publication number: 20160325457
    Abstract: A method of patterning a combined layer of an electrically-conductive film, such as indium-tin-oxide (ITO), that is disposed on a flexible substrate includes bending the combined layer about a radius of curvature. The combined layer is initially bent in a first direction so that the electrically-conducive film is distal to the radius of curvature, so as to form initial dielectric lines in the electrically-conductive film. The combined layer is then bent in another direction so that the electrically-conductive film is proximate to the radius of curvature to further enhance the dielectric performance of the initial dielectric lines. The dielectric lines electrically isolate a portion of the electrically-conductive film that is disposed therebetween, to form an electrically conductive electrode.
    Type: Application
    Filed: December 30, 2014
    Publication date: November 10, 2016
    Applicant: Kent State University
    Inventors: John WEST, Paul Anders OLSON, Da-Wei LEE
  • Patent number: 9470937
    Abstract: Certain exemplary embodiments can provide a system, machine, apparatus, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a process, method, and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to, generating a gradient in an index of refraction of a material.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: October 18, 2016
    Assignees: e-Vision Smart Optics, Inc., Kent State University
    Inventors: Liwei Li, Anthony Van Heugten, Dwight Duston, Phil Bos, Douglas Bryant
  • Patent number: 9416487
    Abstract: A piezoelectric device includes a fiber mat comprising polymer fibers with ferroelectric particles embedded in the polymer fibers. The ferroelectric particles are oriented to generate a net polarization in the fiber mat. The ferroelectric particles may comprise barium titanate particles. The polymer fibers may comprise polylactic acid (PLA) fibers. The piezoelectric device may further include substrates sandwiching the fiber mat, and the fiber mat may be formed by electrospinning polymer fibers containing ferroelectric particles onto one of the substrates. The piezoelectric device may be a piezoelectric actuator configured to receive an input voltage applied across the fiber mat and to output a mechanical displacement in response to the voltage, or the piezoelectric device may be configured to output a voltage in response to a mechanical force applied to the fiber mat.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: August 16, 2016
    Assignee: Kent State University
    Inventors: Antal I. Jakli, Ebru Aylin Buyuktanir, John L. West, Jason Morvan, John Ernest Harden, Jr.
  • Publication number: 20160187681
    Abstract: An encapsulated polymer stabilized cholesteric texture (EPSCT) light shutter is formed from a cholesteric liquid crystal and monomer that is encapsulated into micron sized, polymer-coated droplets by either an emulsification or phase separation process. The polymer-coated droplets are disposed between transparent electrodes, where they are irradiated by ultra-violet (UV) light to polymerize the monomer.
    Type: Application
    Filed: March 9, 2016
    Publication date: June 30, 2016
    Applicant: Kent State University
    Inventors: Deng-Ke Yang, Yue Cui, Cuiyu Zhang
  • Publication number: 20160166881
    Abstract: A system for use in rehabilitation of a target patient is provided. The system includes at least two bicycle devices for use by the target patient and a second operator other than the target patient. The at least two bicycle devices each include pedals. At least one of the pedals may have at least one sensor mounted thereon for monitoring operation of the first bicycle device and the target's condition. A servomotor is coupled to the pedals for providing gear-like resistance or pedal assistance for the at least two bicycle devices. A controller is programmed to electrically couple the at least two bicycle devices to each other.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 16, 2016
    Applicant: Kent State University
    Inventors: Angela L. Ridgel, Hassan Mohammadi-Abdar, Fred M. Discenzo, Kenneth A. Loparo
  • Patent number: 9314931
    Abstract: A robotic fuel cell assembly system includes an end-effector, robotic workcell, and fuel cell components that have integrated design features that allow accurate component alignment during the assembly process of a fuel cell stack within a desired tolerance, while avoiding component overlap, which is a major cause of overboard gas leaks during the fuel cell operation. Accurate component alignment is achieved by electrically non-conductive alignment pins that are mounted on a fuel cell base plate, which are configured to be received by guide holes formed on the fuel cell components, and alignment holes provided by an alignment arm attached to the end-effector. The end-effector also includes a passive compliance system that includes two perpendicularly mounted miniature linear blocks and rails, which serve to compensate for the limitations in the ability of the robotic arm to move the end-effector accurately in a repeated manner.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: April 19, 2016
    Assignee: Kent State University
    Inventor: Vladimir Gurau
  • Patent number: 9304350
    Abstract: An encapsulated polymer stabilized cholesteric texture (EPSCT) light shutter is formed from a cholesteric liquid crystal and monomer that is encapsulated into micron sized, polymer-coated droplets by either an emulsification or phase separation process. The polymer-coated droplets are disposed between transparent electrodes, where they are irradiated by ultra-violet (UV) light to polymerize the monomer.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: April 5, 2016
    Assignee: Kent State University
    Inventors: Deng-Ke Yang, Yue Cui, Cuiyu Zhang
  • Publication number: 20160085095
    Abstract: A polymer-dispersed blue-phase (PDBP) liquid crystal film is formed from a polymer-based latex and blue-phase liquid crystals that are combined using an emulsification process or a polymerization-induced phase separation process. The resultant PDBP liquid crystal film includes droplets formed by the polymer-based latex that encapsulate the blue-phase liquid crystals therein, so as to allow the blue-phase liquid crystals to have a blue phase at room temperature. As such, the PDBP liquid crystal film is conducive for use in manufacturing processes, such as LCD (liquid crystal display) manufacturing processes, while providing desirable optical features, such as field-induced birefringence at low switching voltages.
    Type: Application
    Filed: November 24, 2015
    Publication date: March 24, 2016
    Applicant: Kent State University
    Inventors: Liang-Chy Chien, Jeoung-Yeon Hwang, Emine Kemiklioglu
  • Patent number: 9261745
    Abstract: A phase retarder comprises first and second ?-cells or other tunable birefringent devices arranged optically in series. The phase retardation value of the phase retarder is a difference between the phase retardation values of the first and second ?-cells. Driving circuitry drives the phase retarder to generate a target phase retardation value by: (1) prior to a relaxation period, biasing the ?-cells to produce the target phase retardation value; (2) during the relaxation period, biasing the first ?-cell at a constant bias value; and (3) during the relaxation period, lowering the bias value of the second ?-cell continuously or stepwise to maintain the target phase retardation value for the phase retarder throughout the relaxation period. In some embodiments the operation (2) comprises applying zero bias to the first ?-cell throughout the relaxation period. In some embodiments the operation (1) comprises applying a maximum operational bias to the second ?-cell.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: February 16, 2016
    Assignee: Kent State University
    Inventors: Hsienhui Cheng, Achintya Bhowmik, Philip J. Bos
  • Patent number: 9233481
    Abstract: A method of patterning an electrically-conductive film is performed by providing a flexible substrate that carries the electrically-conductive film thereon to form a combined layer. The combined layer is then bent about a radius of curvature, so as to impart a stress on the brittle conductive film along the axis of curvature of the curved surface. The application of the stress to the conductive film results in the formation of crack lines that are substantially perpendicular to the direction to which the substrate and conductive film are bent. The crack lines serve to define and electrically isolate conductive sections therebetween that can be utilized as electrodes and address lines in electronic devices.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: January 12, 2016
    Assignee: Kent State University
    Inventors: John L. West, Da-Wei Lee
  • Patent number: 9198988
    Abstract: This invention discloses a synthetic procedure for preparing nanoparticulate materials of various metal cyanide compounds containing manganese(II) ions in the crystal lattice with the surfaces coated by a hydrophilic compound, and their use as MRI contrast agents with high sensitivity, long blood circulation half lives and low toxicity at low-field and high field MR scanners.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: December 1, 2015
    Assignee: Kent State University
    Inventors: Songping D. Huang, Anatoly K. Khitrin, Vindya S. Perera, Murthi S. Kandanapitiye
  • Patent number: 9182618
    Abstract: A method of electrophoretic movement of liquid droplets/gas bubbles through a liquid crystal utilizes a direct (DC) or alternating (AC) electric field that is applied along the liquid crystal director (for liquid crystals with a positive dielectric anisotropy) or perpendicular to the director (for liquid crystals with a negative dielectric anisotropy). A perpendicular or tilted orientation of the liquid crystal molecules at the surface of the liquid droplet/gas bubble causes distortions, such that the fore-aft (or left-right) symmetry of the liquid droplet/gas bubble is broken. The asymmetric orientation of the liquid crystal around the liquid droplet/gas bubble allows both charged and neutral particles to be transported, even when the liquid droplets/gas bubbles themselves are perfectly symmetric (spherical).
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: November 10, 2015
    Assignee: Kent State University
    Inventors: Oleg D. Lavrentovich, Israel Esteban Lazo-Martinez, Oleg P. Pishnyak
  • Publication number: 20150233816
    Abstract: Systems and methods for detection of an amphiphile at a liquid crystal interface include the production of circular polarized light. A system 100 for detecting an amphiphile at a liquid crystal interface comprises a source of white collimated light. A circular polarizer is included for circularly polarizing incoming white light. Polarized white light passes through to an LC grid including a suspended LC film and a solution in contact with the LC grid at a surface. A spectrophotometer optically detects the presence of an amphiphile at the surface by determining a change in birefringence exhibited by the suspended LC film. A method for detecting amphiphiles at a liquid crystal water interface comprises shining collimated white light on an LC cell including an LC film, polarizing the white light with a circular polarizer, adding an amphiphile to a solution in contact with the LC film, and optically detecting the presence of the amphiphile by measuring a change in birefringence exhibited by the LC film.
    Type: Application
    Filed: February 13, 2015
    Publication date: August 20, 2015
    Applicant: Kent State University
    Inventors: Antal JAKLI, Elizabeth MANN, Piotr POPOV
  • Patent number: 9085730
    Abstract: The invention provides a liquid crystal (LC) composition, a LC cell thereof, and a LC device thereof. The LC composition comprises (i) a mixture of two or more nematic liquid crystals, and (ii) at least one chiral dopant. The mixture of the liquid crystals can exist in a blue phase within a temperature range of from about 12-60° C. such as 21-28° C. The LC device can be a blue phase mode liquid crystal display (BPLCD) based on such a room-temperature blue phase LC. The BPLCD requires no alignment, and it exhibits merits such as a fast switching time (e.g. sub-millisecond), a low switching voltage and a large field-induced birefringence, among others.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: July 21, 2015
    Assignee: Kent State University
    Inventors: Liang-Chy Chien, Lu Lu, Jeoung Yeon Hwang
  • Patent number: 9086596
    Abstract: A surface-stabilized in-plane switching (SS-IPS) liquid crystal (LCD) cell includes a pair of spaced substrates that include alignment layers disposed thereon. The alignment layers are treated to define a first director orientation. Disposed between the alignment layers is a liquid crystal material that contains polymer fibrils that are disposed upon each of the alignment layers. The polymer fibrils serve to maintain the alignment of the liquid crystal molecules in the first director orientation when no voltage is applied to the LCD cell via interdigitated electrodes disposed upon the alignment layers, thus improving the dynamic response of the SS-IPS LCD cell.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: July 21, 2015
    Assignee: Kent State University
    Inventors: Liang-Chy Chien, Jeoung-Yeon Hwang
  • Patent number: 9052562
    Abstract: A method of electrophoretic movement of particles through a liquid crystal utilizes a direct (DC) or alternating (AC) electric field that is applied along the liquid crystal director (for liquid crystals with a positive dielectric anisotropy) or perpendicular to the director (for liquid crystals with a negative dielectric anisotropy). A perpendicular or tilted orientation of the liquid crystal molecules at the surface of the particle causes distortions, such that the fore-aft (or left-right) symmetry of the particle is broken. The asymmetric orientation of the liquid crystal around the particle allows both charged and neutral particles to be transported, even when the particles themselves are perfectly symmetric (spherical).
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: June 9, 2015
    Assignee: Kent State University
    Inventors: Oleg D. Lavrentovich, Israel Esteban Lazo-Martinez, Oleg P. Pishnyak
  • Patent number: 9005478
    Abstract: A liquid crystal composition comprising a chiral dopant compound represented by the following structure (Structure 1): wherein: R1 and R2 are independently hydrogen, —(C?O)R9, —(C?O)R10, alkyl, aryl, alkaryl, alkenyl, cycloalkyl, alkoxyaryl, or heterocyclic all either substituted or unsubstituted, or combine to form a carbocyclic or heterocyclic ring; R3 is hydrogen, halogen, cyano, alkoxy, NHCOR9, NHSO2R9, COOR9, OCOR9, aryl, alkyl, alkenyl, cycloalkyl, or heterocyclic all either substituted or unsubstituted; R4 is hydrogen, alkyl, aryl, alkenyl, cycloalkyl, or heterocyclic all either substituted or unsubstituted; R5, R6, R7, and R8 are independently hydrogen, halogen, cyano, alkoxy, NHCOR9, NHSO2R9, COOR9, OCOR9, aryl, alkyl, alkenyl, cycloalkyl, alkoxyaryl or heterocyclic all either substituted or unsubstituted, or combine with each other, or R5 can combine with R4 to form a carbocyclic or heterocyclic ring; R9 and R10 are independently alkyl, alkoxy, aryl, naphthyl, styryl, alkenyl, cycloalkyl, alko
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: April 14, 2015
    Assignees: Kent Displays Incorporated, Kent State University
    Inventors: Donald R. Diehl, Erica N. Montbach
  • Patent number: 8964161
    Abstract: The present invention provides an electro-optical device comprising a cell of polymer-stabilized blue phase (PSBP) liquid crystal under an electrical field and a method of controlling the reflection and transmission of an incident electromagnetic radiation such as visible light, by way of controlling the electrical field. The invention exhibits merits such as cost-effectiveness; simpler manufacturability due to the removal of requirements of polarizer and color filter; and fast switching, among others.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: February 24, 2015
    Assignee: Kent State University
    Inventors: Liang-Chy Chien, Shin-Ying Lu
  • Patent number: 8940275
    Abstract: An agent for imaging of a biological system or delivering drugs to a biological system including one or more nanoparticles formed of at least one gadolinium coordination polymer.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: January 27, 2015
    Assignees: Kent State University, Case Western Reserve University
    Inventors: Songping D. Huang, Yongxiu Li, James P. Basilion, Jihua Hao, Christopher Flask