Patents Assigned to Kent State University
  • Patent number: 8537326
    Abstract: The invention provides a liquid crystal (LC) composition, a LC device such as a liquid crystal display and a phase modulator, and a method thereof. The liquid crystal composition comprises a liquid crystal and a polymer. The liquid crystal exhibits a macroscopic anisotropic property such as optical property in the absence of the polymer under a condition such as certain temperature. The polymer in the composition stabilizes the liquid crystal so that the liquid crystal exhibits a macroscopic isotropic property under the same condition, and the liquid crystal stabilized by the polymer exhibits the macroscopic anisotropic property when an electrical field is applied thereon. The devices exhibit technical merits such as large viewing angle, fast response time, better contrast ratio, easy manufacturability of large size display with improved dark state, easy manufacturing process with wider temperature region, and polarization-insensitivity of PSI phase modulator, among others.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: September 17, 2013
    Assignee: Kent State University
    Inventors: Deng-Ke Yang, Young Cheol Yang, Rui Bao
  • Patent number: 8531646
    Abstract: An electro-optical device comprises a liquid crystal material disposed in a cell and electrodes configured to bias the liquid crystal material into a generally in-plane director configuration having a non-constant spatial pattern selectable or adjustable by an in-plane component of the biasing to produce a desired refractive of diffractive optical effect.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: September 10, 2013
    Assignee: Kent State University
    Inventors: Lei Shi, Philip J. Bos, Paul F. Manamon
  • Patent number: 8482733
    Abstract: An optical measurement system for obtaining information such as the absorption coefficient of a light-absorbing liquid, or a surface profile of an object immersed in a light-absorbing liquid having a known absorption coefficient. The system includes a light source that transmits light through the liquid, a detector that records an image of the light transmitted through the sample and a processor or other means adapted to analyze the intensity distribution found on the image to generate information about the sample.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: July 9, 2013
    Assignee: Kent State University
    Inventors: Michael A. Model, Anatoly K. Khitrin
  • Patent number: 8427615
    Abstract: The invention relates to flexible liquid crystal devices and methods, and the electrically conducting backplane of a liquid crystal display for example. A substrate is provided that supports components of a liquid crystal display including a liquid crystal layer that is electrically addressed to produce images. The substrate can be flexible or drapable. An electrode arrangement is formed on the substrate, which includes a plurality of small islands or zones of highly conductive material. The highly conductive islands or zones may be dimensioned to be smaller than the dimensions of the electrode pattern, and are electrically isolated from one another. The plurality of islands or zones are then connected in a predetermined pattern by a conducting polymer layer having a predetermined configuration to provide the desired electrode pattern.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: April 23, 2013
    Assignee: Kent State University
    Inventor: John L. West
  • Patent number: 8404318
    Abstract: The present invention comprises a device and method for ordering molecules of lyotropic chromonic liquid crystals to aligned structure of a dried film. An example of an aligned film may be transparent to visible light but not transparent to polarized light in the ultraviolet and/or infrared portions of the electromagnetic spectrum. A shearing device having a shearing tool and a repelling pad may repel the solvent and provide a shear force to shear the LCLC dissolved in the solvent as a film on the surface of a substrate. A method of making an aligned lyotropic chromonic liquid crystal-based film comprises providing a mixture of a lyotropic chromonic liquid crystal material in a solvent for the liquid crystal material, applying the mixture to a substrate, shearing the lyotropic chromonic liquid crystal with a shearing device and removing the solvent to produce an aligned lyotropic chromonic liquid crystal-based film.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: March 26, 2013
    Assignee: Kent State University
    Inventors: Andrii B. Golovin, Oleg Lavrentovich
  • Patent number: 8329058
    Abstract: A photodisplay device in which an optically addressed image can be viewed indefinitely, erased and readdressed with a new image is disclosed. Optically responsive reversible photochiral materials are incorporated into a bistable cholesteric liquid crystal in an electrooptic display cell. A high resolution image exposed on the cell is fixed by a low voltage pulse to unpatterned electrodes and can be, at a later time, erased with a high voltage pulse.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: December 11, 2012
    Assignees: Kent Displays Incorporated, Kent State University
    Inventors: Quan Li, Lisa M. Green, J. William Doane, Asad A. Khan, Nithya Venkataraman, Irina Shiyanovskaya
  • Patent number: 8308977
    Abstract: There are provided methods and systems for precisely controlling the surfactant concentration and character of ferroelectric nanoparticles in a ferroelectric liquid crystal dispersion. In an aspect, the invention provides an efficient FTIR technique to characterize the status and measure the distribution of the surfactant in ferroelectric particle dispersion. This allows for establishing a reproducible fabrication process for ferroelectric nanoparticle liquid crystal dispersions. The methods also maintain the nanoparticles ferroelectricity, which is provided by the addition of surfactant during a comminution process. The invention therefore optimizes both the milling time (to achieve small particle size and narrow size distribution) and surfactant concentration (to maintain the ferroelectricity during milling).
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: November 13, 2012
    Assignee: Kent State University
    Inventors: Ke Zhang, Hari Mukunda Atkuri, John L. West
  • Publication number: 20120273725
    Abstract: A liquid crystal composition comprising a chiral dopant compound represented by the following formula: wherein: R1, R2 are independently aryl, alkyl, alkenyl, cycloalkyl, alkoxyaryl, alkaryl or heterocyclic all either substituted or unsubstituted, or combine to form a carbocyclic or heterocyclic ring; R3 and R4 are independently hydrogen, halogen, cyano, alkoxy, NHCOR7, NHSO2R7, COOR7, OCOR7, aryl, alkyl, alkenyl, cycloalkyl, alkoxyaryl, alkaryl or heterocyclic all either substituted or unsubstituted, or combine with either R1 or R2 to form a carbocylic or heterocyclic ring; R5 and R6 are independently hydrogen, CH2, CH, alkyl or aryl either substituted or unsubstituted, COOR7, or combine with L to form a carbocyclic or heterocyclic ring; R7 is aryl, alkyl, alkenyl, cycloalkyl, alkoxyaryl or heterocyclic all either substituted or unsubstituted; L is the non-metallic elements required to form a carbocyclic or heterocyclic ring, or a single bond or a double bond; m is 1-3; n is 0-12.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 1, 2012
    Applicants: Kent State University, Kent Displays Incorporated
    Inventors: Donald R. Diehl, Thomas Welter, Erica N. Montbach, J. William Doane, Nithya Venkataraman
  • Patent number: 8300189
    Abstract: Provided is a liquid crystal (LC) device and method thereof. The device comprises (i) a body of liquid crystal, (ii) a first layer comprising a first material, and (iii) a second layer comprising a second material; wherein the first layer is located between the body of liquid crystal and the second layer; the first layer alone aligns the liquid crystal in a first orientation; the second layer alone aligns the liquid crystal in a second orientation; and the first orientation is different from the second orientation. With optimized first layer thickness, the invention can be used in sensor applications to improve detection sensitivity, and in LCD applications with enhanced control over LC pretilt transition.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: October 30, 2012
    Assignee: Kent State University
    Inventors: Ke Zhang, Philip J. Bos, Robert J. Twieg, Na Liu
  • Patent number: 8294645
    Abstract: The invention provides a liquid crystal device and method thereof. Subsequent to applying a first electrical voltage on a liquid crystal to induce a reorientation of the liquid crystal, a second electrical voltage with proper polarity is applied on the liquid crystal to assist the relaxation of the reorientation that was induced by the first electrical voltage. The “switch-off” phase of the liquid crystal can therefore be accelerated or temporally shortened, and the device can exhibit better performance such as fast response to on/off signals. The invention can be widely used LCD, LC shutter, LC lens, spatial light modulator, telecommunication device, tunable filter, beam steering device, and electrically driven LC device, among others.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: October 23, 2012
    Assignee: Kent State University
    Inventors: Sergij V. Shiyanovskii, Mingxia Gu, Oleg D. Lavrentovich
  • Patent number: 8263029
    Abstract: The invention provides a simple and cost-effective method for preparing particles such as anisotropic semiconductor nanoparticles (e.g. CdS) and devices thereof. The method comprises (i) dispersing at least part of particle-forming reactants in a self-organized medium such as surfactant-aqueous solution system, and (ii) conducting a particle-forming reaction using the particle-forming reactants dispersed in the self-organized medium under shear condition to form the particles. The anisotropic property of the particles is controlled at least partially by the shear condition. The invention may be used to prepare quantum dots in a liquid crystal, and various devices such as nonlinear optics, optoelectronic devices, and solar cells, among others.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: September 11, 2012
    Assignee: Kent State University
    Inventors: Antal Jakli, Stefanie Taushanoff, Mátyás Molnár, Attila Bóta, Erika Kalman, Peter Palinkás, legal representative, Andrea Palinkás, legal representative, Zoltan Varga
  • Patent number: 8264639
    Abstract: The present invention provides liquid crystal devices comprised of a composite of an internal polymer network localized on the substrate surfaces and short-pitch dual-frequency switchable cholesteric liquid crystal that operate in two different modes including in-plane switching (amplitude modulation) and out-of-plane switching (phase modulation). The invention further provides a method of making a liquid crystal device demonstrating uniform lying helical axis where the device comprises a composite of an internal spatially ordered polymer network localized by in-situ photo-polymerization at the surface of the substrate. The invention can be used for flat panel displays, as well as spatial light modulators for applications such as optical waveguides, optical beam scanners, computer-generated holograms, and adaptive optics.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: September 11, 2012
    Assignee: Kent State University
    Inventors: Liang-Chy Chien, Lei Shi, Sang Hwa Kim
  • Patent number: 8257639
    Abstract: A process for making a stimuli responsive liquid crystal-polymer composite fiber comprising mixing a liquid crystal, a polymer, and a solvent; processing the mixture in the presence of an electric potential across a collection distance; phase separating a polymer and said liquid crystal; and encapsulating said liquid crystal within said polymer. The fiber generally comprises a liquid crystal core and a polymer shell wherein the liquid crystal is responsive to chemical changes, thermal and mechanical effects, as well as electrical and magnetic fields. A liquid crystal containing fiber can be utilized as optical fibers, in textiles, and in optoelectronic devices.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: September 4, 2012
    Assignee: Kent State University
    Inventors: Ebru A. Buyuktanir, Margaret W. Frey, John L. West
  • Patent number: 8241522
    Abstract: The invention provides liquid crystalline blends, a device such as a photovoltaic cell using the blend and method thereof. A liquid crystalline blend comprises at least an electron donor and at least an electron acceptor with a weight or molar ratio in the range of from about 1:20 to about 20:1. Another liquid crystalline blend comprises at least an electron donor and at least an electron acceptor, wherein the electron donor, the electron acceptor, or both is (are) halo-substituted such as F-substituted. The donor or the electron acceptor can be excited by an electromagnetic radiation such as solar light to induce electron transfer between the donor and the acceptor. The photovoltaic cell is improved in that favorable molecular arrangement in the blend gives more interfaces between the donor and the acceptor and thus a viable path for dissociation and electrons and/or holes; as well as larger light-harvesting area toward the coming light.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: August 14, 2012
    Assignee: Kent State University
    Inventor: Quan Li
  • Patent number: 8237910
    Abstract: A liquid crystal etalon includes a chiral nematic material contained in a liquid crystal cell having alignment surfaces configured to bias the chiral nematic material toward a twisted liquid crystal configuration with a twist less than 360°. Electrodes are arranged to apply an operative electrical bias to the liquid crystal cell. Mirrors disposed about the chiral nematic material define a resonant optical cavity. At a first electrical bias the etalon is transmissive for light of a first wavelength via a selected liquid crystal twist angle and cavity thickness at which different non-equal eigenmodes reach resonance conditions simultaneously. In a projector embodiment, a projection system with a field sequential image projection light source is coupled with the liquid crystal etalon, the etalon electrodes are patterned into pixels defining a display area, and the projector is operated in a field sequential illumination mode.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: August 7, 2012
    Assignee: Kent State University
    Inventors: Enkh-Amgalan Dorjgotov, Philip J. Bos, Achintya K. Bhowmik
  • Patent number: 8199286
    Abstract: A transreflective display in which the thickness of the liquid crystal layer is the same for both transmissive and reflective modes. The transmissive and reflective pixels are stabilized in two different liquid crystal configurations with different birefringences. The light retardation effect of one path in the transmissive pixels is close to or equals the retardation effect of two paths in the reflective pixels, resulting in synchronization of the two modes.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: June 12, 2012
    Assignee: Kent State University
    Inventors: Deng-Ke Yang, Fushan Zhou
  • Patent number: 8169680
    Abstract: Polymers that undergo a reversible phase change in response to being exposed to a light from a laser having a radiation pressure greater than a threshold level. The phase changeable polymers have the ability to reduce the intensity of the laser and can advantageously scatter laser light incident on the polymers. The on-off response of such polymers is in the microsecond range and the light scattering property is independent of laser wavelength. The polymers can beneficially be incorporated into devices to protect human vision and optical instruments that are vulnerable to lasers at high intensities. Methods for making and using such devices are also disclosed.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: May 1, 2012
    Assignees: Kent State University, The Texas A&M University System
    Inventors: Hanbin Mao, Paul Luchette, David E. Bergbreiter
  • Patent number: 8153446
    Abstract: Fluorophores derived from photoactivatable azide-pi-acceptor fluorogens or from a thermal reaction of an azide-pi-acceptor fluorogen with an alkene or alkyne are disclosed. Fluorophores derived from a thermal reaction of an alkyne-pi-acceptor fluorogen with an azide are also disclosed. The fluorophores can readily be activated by light and can be used to label a biomolecule and imaged on a single-molecule level in living cells.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: April 10, 2012
    Assignees: Kent State University, Leland Stanford Junior University
    Inventors: Robert J. Twieg, William E. Moerner, Samuel J. Lord, Na Liu, Reichel Samuel
  • Patent number: 8092783
    Abstract: Gadolinium+3 (Gd3+) containing (or incorporated) Prussian blue lattice contrast agents that can be used as an MRI contrast agent have unexpectedly improved r1 relaxivities of 1 or 2 magnitudes higher than the commercial Gd3+-chelates as well as exceedingly, non-toxic, low release of the Gd3+ ions into an aqueous environment at a pH of about 2 to about 7.5. The Prussian blue lattice containing Gd3+ ions therein can be used for clinical diagnosis intravenously to human beings for medical imaging. The particle sizes of the doped Prussian blue lattices are of a nanosize scale and are very stable against agglomeration.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: January 10, 2012
    Assignee: Kent State University
    Inventors: Songping D. Huang, Yongxiu Li, Mohammadreza Shokouhimehr
  • Patent number: 8081272
    Abstract: In a preparation method, a chiral or cholesteric liquid crystal, a photoreactive monomer, and a photoinitiator are disposed in a liquid crystal cell. A principal surface of the liquid crystal cell is illuminated with ultraviolet light selected to have a non-uniform ultraviolet light intensity profile in the liquid crystal cell. The illuminating cooperates with the photoinitiator to polymerize at least a portion of the photoreactive monomer near the principal surface to generate a polymer network having a density corresponding to the non-uniform ultraviolet light intensity profile. The polymer network biases the liquid crystal toward a selected helical alignment direction. In some embodiments, the illuminating includes illuminating with first and second ultraviolet light intensity profiles to produce surface and volume polymer network components.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: December 20, 2011
    Assignees: Kent State University
    Inventors: Lachezar Komitov, Liang-Chy Chien, Sang Hwa Kim