Patents Assigned to Kent State University
  • Patent number: 8913215
    Abstract: A bistable switchable liquid crystal device is provided in which the device can be switched between a transparent and an opaque state by a predetermined voltage pulse. The device is based on polymer stabilized cholesteric materials. No additional amount of voltage has to be applied to the device in order to sustain the optical states. Therefore, the device is energy-saving.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: December 16, 2014
    Assignee: Kent State University
    Inventors: Deng-Ke Yang, Lei Shi, Rui Bao
  • Publication number: 20140361270
    Abstract: Novel microlens array architectures for enhanced light outcoupling from light emission are provided. Organic light emitting devices (OLEDs) that include an outcoupling layer including these novel microlens array architectures and method for fabricating such OLEDs are provided. These devices may be used to provide OLEDs with optimized light extraction.
    Type: Application
    Filed: May 22, 2014
    Publication date: December 11, 2014
    Applicants: Universal Display Corporation, Kent State University
    Inventors: Yue CUI, Deng-ke YANG, Ruiqing Ma, Gregory McGraw, Julia J. Brown
  • Patent number: 8868725
    Abstract: The invention is directed to network management systems and methods that provide substantially real-time network management and control capabilities of multimedia streaming traffic in telecommunications networks. The invention provides pre-emptive and autonomous network management and control capabilities, and may include shared intelligence of embedded systems—Heterogeneous Sensor Entities (HSE) and the Sensor Service Management (SSM) system. HSEs are distributed real-time embedded systems provisioned in various network elements. HSEs performs fault, configuration, accounting, performance and security network management functions in real-time; and real-time network management control activations and removals. SSM facilitates automated decision making, rapid deployment of HSEs and real-time provisioning of network management and control services. The service communication framework amongst various HSEs and the SSM is provided by the Heterogeneous Service Creation system.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: October 21, 2014
    Assignee: Kent State University
    Inventor: Augustine S. Samba
  • Patent number: 8867121
    Abstract: Electrically reconfigurable metamaterial with spatially varied refractive index is proposed for applications such as optical devices and lenses. The apparatus and method comprises a metamaterial in which the refractive indices are modified in space and time by applying one or more electric fields. The metamaterials are electrically controllable and reconfigurable, and consist of metal (gold, silver, etc.) particles of different shapes, such as rods, with dimension much smaller than the wavelength of light, dispersed in a dielectric medium. The metamaterial is controlled by applying a non-uniform electric field that causes two effects: (1) It aligns the metallic anisometric particles with respect to the direction of the applied electric field and (2) It redistributes particles in space, making their local concentration position dependent.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: October 21, 2014
    Assignee: Kent State University
    Inventors: Oleg D. Lavrentovich, Andrii B. Golovin
  • Patent number: 8772048
    Abstract: Fluorophores derived from photoactivatable azide-pi-acceptor fluorogens or from a thermal reaction of an azide-pi-acceptor fluorogen with an alkene or alkyne are disclosed. Fluorophores derived from a thermal reaction of an alkyne-pi-acceptor fluorogen with an azide are also disclosed. The fluorophores can readily be activated by light and can be used to label a biomolecule and imaged on a single-molecule level in living cells.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: July 8, 2014
    Assignees: Kent State University, Leland Stanford Junior University
    Inventors: Robert J. Twieg, William E. Moerner, Samuel J. Lord, Na Liu, Reichel Samuel
  • Patent number: 8743109
    Abstract: A stand-alone platform and a method for the multi-dimensional rendering, display, manipulation, and analysis of full high resolution volumetric data sets. The systems and methods provide the ability to volumetrically render images with extremely high resolution in applications such as medical imaging procedures, digital microscopy such as in use of a confocal microscope, and other areas where extremely large data sets are produced from the imaging process. Certain embodiments of the system and methods produce left and right eye images of the rendered data, for viewing in parallax via a synchronized headset, and the ability to manipulate the data and display of image data easily and in real time.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: June 3, 2014
    Assignee: Kent State University
    Inventors: James Blank, Robert Clements
  • Patent number: 8716355
    Abstract: Compounds of the hydroxytolan family kill tumor cells, inhibit tumor growth and development, and are thus useful in method for treating a tumor or cancer in subjects in need thereof. These compounds are also active in preventing or treating a variety of skin diseases and conditions. The most preferred hydroxytolan compounds are 4,4?-dihydroxytolan. (KST-201), 4 hydroxy 4? trifluoromethyltolan or 4? hydroxy 4 trifluoromethyltolan (KST-213), 3,4?,5-trihydroxytolan or 3?,4,5?-trihydroxytolan (KST-301) and 3,3?,5,5?-tetrahydroxytolan (KST-401). The compounds and methods of using them alone and in combination with ascorbate and certain cyclic compounds to inhibit the development, growth or metastasis of tumor/cancer or preneoplastic cells, or to prevent or treat skin disorders in a subject are disclosed.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: May 6, 2014
    Assignee: Kent State University
    Inventor: Chun-che Tsai
  • Patent number: 8716005
    Abstract: The present invention disposes a membrane between two electrical conductive walls having a height at least as great as the thickness of the membrane. The conductive walls are fabricated on an electrically insolative chip base. The chip base has one or more through hole between the electrically conducting walls. The chip is placed inside a container having a well below the through hole of the electrically insolative base. At least one passageway extends from the well to the periphery of the container. This invention probes changes of the membrane as an in-plane electric field is applied between the conductive walls. The well may include various compounds while-other compounds can be placed in contact with the top of the membrane. The passageways are used to introduce substances into and out of the well.
    Type: Grant
    Filed: July 12, 2010
    Date of Patent: May 6, 2014
    Assignee: Kent State University
    Inventor: Thusara Sugat Chandra Abeygunaratne
  • Patent number: 8709281
    Abstract: A liquid crystal composition comprising a chiral dopant compound represented by the following structure (Structure 1): wherein: R1 and R2 are independently hydrogen, —(C?O)R9, —(C?O)R10, alkyl, aryl, alkaryl, alkenyl, cycloalkyl, alkoxyaryl, or heterocyclic all either substituted or unsubstituted, or combine to form a carbocyclic or heterocyclic ring; and R3-R9 are as described in the disclosure. Also featured are liquid crystal compositions comprising a chiral dopant compound represented by any of Structure 2-4 as described in the disclosure.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: April 29, 2014
    Assignee: Kent State University
    Inventors: Donald R. Diehl, Erica N. Montbach
  • Patent number: 8704977
    Abstract: The invention provides a liquid crystal cell and method thereof. The cell comprises two opposed substrates and a surfactant-free lyotropic chromonic liquid crystals (LCLC) material disposed therebetween. By using an ammonium compound with LCLC or surface treatment on the substrates, the alignment of the LCLC material can be manipulated as a homeotropic bulk alignment; or a hybrid bulk alignment in which the LCLC alignment is changed from homeotropic bulk alignment in the vicinity of one substrate to planar alignment in the vicinity of another substrate. The cell can be used in biosensing, detection and amplification of ligands, optical devices, and photovoltaics etc.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: April 22, 2014
    Assignee: Kent State University
    Inventors: Oleg D. Lavrentovich, Yuriy A. Nastyshyn, Vassili G. Nazarenko, Roman M. Vasyuta, Oleksandr P. Boiko, Ye Yin, Sergij V. Shiyanovskii
  • Patent number: 8680142
    Abstract: The combination of compounds of the hydroxytolan family with ascorbate plus naphthoquinone (Vitamin K3; VK3), or a quinone or semiquinone analogue of VK3, kill tumor cells, inhibit tumor growth and development, and treat cancer in subjects in need thereof.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: March 25, 2014
    Assignees: Kent State University, Summa Health System
    Inventors: Chun-che Tsai, James M. Jamison, Jackie L. Summers
  • Publication number: 20140054498
    Abstract: A liquid crystal composition comprising a chiral dopant compound represented by the following structure (Structure 1): wherein: R1 and R2 are independently hydrogen, —(C?O)R9, —(C?O)R10, alkyl, aryl, alkaryl, alkenyl, cycloalkyl, alkoxyaryl, or heterocyclic all either substituted or unsubstituted, or combine to form a carbocyclic or heterocyclic ring; and R3-R9 are as described in the disclosure. Also featured are liquid crystal compositions comprising a chiral dopant compound represented by any of Structure 2-4 as described in the disclosure.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Applicants: Kent State University, Kent Displays Incorporated
    Inventors: Donald R. Diehl, Erica N. Montbach
  • Patent number: 8654281
    Abstract: Liquid crystal cells and lenses having a variable resulting pre-tilt across two or more areas of the cell, and in particular, cells and lenses are provided wherein a resulting pre-tilt is varied across the cell according to any desired birefringence profile that can be utilized in liquid crystalline optical elements and liquid crystal displays. Methods of fabrication of the liquid crystal cells with variable resulting pre-tilt are disclosed.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: February 18, 2014
    Assignees: California State University, Sacramento, Kent State University
    Inventors: Philip Bos, Vassili V. Sergan, Tatiana A. Sergan
  • Patent number: 8595923
    Abstract: There are provided methods for creating energy conversion devices based on the giant flexoelectric effect in non-calamitic liquid crystals. By preparing a substance comprising at least one type of non-calamitic liquid crystal molecules and stabilizing the substance to form a mechanically flexible material, flexible conductive electrodes may be applied to the material to create an electro-mechanical energy conversion device which relies on the giant flexoelectric effect to produce electrical and/or mechanical energy that is usable in such applications as, for example, power sources, energy dissipation, sensors/transducers, and actuators.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: December 3, 2013
    Assignee: Kent State University
    Inventors: Antal I. Jakli, John Ernest Harden, Jr., Samuel Sprunt, James T. Gleeson, Peter Palffy-Muhoray
  • Patent number: 8586389
    Abstract: A method for detecting a ligand is provided. Antibodies to a predetermined ligand are attached to substrates. The substrates are superparamagnetic, dyed beads. The beads are exposed to an electromagnetic field to immobilize the beads. The beads are contacted with a sample and the antibodies are allowed to recognize and capture the ligand in the sample. The electromagnetic field is optionally removed. The beads are contacted with a liquid crystalline material and the light transmission properties of the liquid crystalline material are examined for alteration caused by the presence of aggregates of the beads and the ligand.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: November 19, 2013
    Assignee: Kent State University
    Inventor: Christopher J. Woolverton
  • Patent number: 8580230
    Abstract: A material useful as a MRI contrast agent used for medical imaging, drug delivery platform or other functions are provided as a class of non-gadolinium and non-iron oxide based materials that comprise Prussian blue materials or analogue materials. The materials may be used as T1-weighted and/or T2-weighted MRI contrast agents for imaging, including cellular imaging, in clinical diagnosis and biomedical research applications. The agent is a compound created from Prussian blue materials that is non-toxic, and can be internalized by cells through endocytosis. The Prussian blue materials may also be used for drug delivery applications. The Prussian blue materials may be administered orally to a subject in either medical imaging or drug delivery applications or dual modality MRI-Fluorescence imaging agent.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: November 12, 2013
    Assignee: Kent State University
    Inventors: Songping D. Huang, Soumitra Basu, Anatoly K. Khitrin, Mohammadreza Shokouhimehr, Eric Scott Soehnlen
  • Patent number: 8580144
    Abstract: A composition including nanocomposites formed from blue phase liquid crystals that are stabilized with dopants and nanorods such as metallic nanorods and/or carbon nanotubes. Devices including the compositions are disclosed that provide increases temperature ranges as well as reduction in threshold voltage and turn on voltage, in addition to the inherent blue phase liquid crystal properties of sub-millisecond response time in the field induced Kerr effect.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: November 12, 2013
    Assignee: Kent State University
    Inventors: Liang-Chy Chien, Jeoung Yeon Hwang, Jenny-Marie Wong
  • Patent number: 8570460
    Abstract: A liquid crystalline optical medium includes polymer stabilized liquid crystal material. The polymer stabilized liquid crystal material includes a short pitch cholesteric liquid crystal material stabilized by a polymer material. The effective phase retardation of the polarization independent liquid crystal optical medium can be controlled by external (for example, electric and magnetic) fields.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: October 29, 2013
    Assignee: Kent State University
    Inventors: Mingxia Gu, Liubov Kreminska, Andrii Golovin, Oleg D. Lavrentovich
  • Patent number: 8564750
    Abstract: A method of preparing liquid crystal alignment films using an inkjet printer to control liquid crystal alignment is disclosed. The alignment ink is formulated from a single alignment material or combination of alignment materials to realize desired pretilt angle. The alignment films can be applied with designed patterns of alignment films of different pretilt angle on at least one substrate to achieve pattern-aligned liquid crystal devices.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: October 22, 2013
    Assignee: Kent State University
    Inventors: Liang-Chy Chien, Jeoung Yeon Hwang
  • Patent number: D715595
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: October 21, 2014
    Assignee: Kent State University
    Inventors: John Gunstad, Joel W. Hughes