Patents Assigned to Kepler Computing Inc.
  • Patent number: 12238935
    Abstract: A process integration and patterning flow used to pattern a memory array area for an embedded memory without perturbing a fabricating process for logic circuitries. The fabrication process uses a pocket mask (e.g., a hard mask) to decouple the etching process of a memory array area and non-memory area. Such decoupling allows for a simpler fabrication process with little to no impact on the current fabrication process. The fabrication process may use multiple pocket masks to decouple the etching process of the memory array area and the non-memory area. This fabrication process (using multiple pocket masks) allows to avoid exposure of memory material into a second pocket etch chamber. The process of etching memory material is decoupled from the process of etching an encapsulation material. Examples of embedded memory include dynamic random-access memory and ferroelectric random-access memory.
    Type: Grant
    Filed: July 27, 2023
    Date of Patent: February 25, 2025
    Assignee: Kepler Computing Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Rajeev Kumar Dokania, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 12223992
    Abstract: Described is a low power, high-density non-volatile differential memory bit-cell. The transistors of the differential memory bit-cell can be planar or non-planer and can be fabricated in the frontend or backend of a die. A bit-cell of the non-volatile differential memory bit-cell comprises first transistor first non-volatile structure that are controlled to store data of a first value. Another bit-cell of the non-volatile differential memory bit-cell comprises second transistor and second non-volatile structure that are controlled to store data of a second value, wherein the first value is an inverse of the second value. The first and second volatile structures comprise ferroelectric material (e.g., perovskite, hexagonal ferroelectric, improper ferroelectric).
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: February 11, 2025
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh
  • Patent number: 12218045
    Abstract: An apparatus and configuring scheme where a capacitive input circuit can be programmed to perform different logic functions by adjusting the switching threshold of the capacitive input circuit. Digital inputs are received by respective capacitors on first terminals of those capacitors. The second terminals of the capacitors are connected to a summing node. A pull-up and pull-down device are coupled to the summing node. The pull-up and pull-down devices are controlled separately. During a reset phase, the pull-up and/or pull-down devices are turned on or off in a sequence, and inputs to the capacitors are set to condition the voltage on node n1. As such, a threshold for the capacitive input circuit is set. After the reset phase, an evaluation phase follows. In the evaluation phase, the output of the capacitive input circuit is determined based on the inputs and the logic function configured during the reset phase.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: February 4, 2025
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Publication number: 20250040146
    Abstract: Approaches for integrating FE memory arrays into a processor, and the resulting structures are described. Simultaneous integrations of regions with ferroelectric (FE) cells and regions with standard interconnects are also described. FE cells include FE capacitors that include a FE stack of layers, which is encapsulated with a protection material. The protection material protects the FE stack of layers as structures for regular logic are fabricated in the same die.
    Type: Application
    Filed: October 16, 2024
    Publication date: January 30, 2025
    Applicant: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Gaurav Thareja, Amrita Mathuriya
  • Patent number: 12212321
    Abstract: A low power sequential circuit (e.g., latch) uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. In one example, a sequential circuit includes pass-gates and inverters, but without a feedback mechanism or memory element. In another example, a sequential uses load capacitors (e.g., capacitors coupled to a storage node and a reference supply). The load capacitors are implemented using ferroelectric material, paraelectric material, or linear dielectric. In one example, a sequential uses minority, majority, or threshold gates with ferroelectric or paraelectric capacitors. In one example, a sequential circuit uses minority, majority, or threshold gates configured as NAND gates.
    Type: Grant
    Filed: June 23, 2023
    Date of Patent: January 28, 2025
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Ikenna Odinaka, Rajeev Kumar Dokania, Rafael Rios, Sasikanth Manipatruni
  • Publication number: 20250022500
    Abstract: Described herein is a memory bit-cell that results in lower leakage and higher sensing margin. In at least one embodiment, a memory bit-cell comprises a plurality of capacitors, wherein an individual capacitor is coupled to a node and an individual plate-line. In at least one embodiment, memory bit-cell comprises a first transistor coupled to the node. In at least one embodiment, memory bit-cell comprises a second transistor coupled in series with the first transistor, wherein the second transistor is coupled to a bit-line, wherein the first transistor or the second transistor is controllable by a word-line, and wherein the word-line is parallel to the individual plate-line.
    Type: Application
    Filed: September 17, 2024
    Publication date: January 16, 2025
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Erik Unterborn, Pramod Kolar, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Patent number: 12200941
    Abstract: The memory bit-cell formed using the ferroelectric capacitor results in a taller and narrower bit-cell compared to traditional memory bit-cells. As such, more bit-cells can be packed in a die resulting in a higher density memory that can operate at lower voltages than traditional memories while providing the much sought after non-volatility behavior. The pillar capacitor includes a plug that assists in fabricating a narrow pillar.
    Type: Grant
    Filed: August 30, 2022
    Date of Patent: January 14, 2025
    Assignee: Kepler Computing Inc.
    Inventors: Gaurav Thareja, Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Publication number: 20250014621
    Abstract: Described herein is a memory bit-cell that results in lower leakage and higher sensing margin. In at least one embodiment, a memory bit-cell comprises a plurality of capacitors, wherein an individual capacitor is coupled to a node and an individual plate-line. In at least one embodiment, memory bit-cell comprises a first transistor coupled to the node. In at least one embodiment, memory bit-cell comprises a second transistor coupled in series with the first transistor, wherein the second transistor is coupled to a bit-line, wherein the first transistor or the second transistor is controllable by a word-line, and wherein the word-line is parallel to the individual plate-line.
    Type: Application
    Filed: September 17, 2024
    Publication date: January 9, 2025
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Erik Unterborn, Pramod Kolar, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Patent number: 12190946
    Abstract: A disturb mitigation scheme is described for a 1TnC or multi-element ferroelectric gain bit-cell where after writing to a selected capacitor of the bit-cell, a cure phase is initiated. Between the cure phase and the write phase, there may be zero or more cycles where the selected word-line, bit-line, and plate-lines are pulled-down to ground. The cure phase may occur immediately before the write phase. In the cure phase, the word-line is asserted again just like in the write phase. In the cure phase, the voltage on bit-line is inverted compared to the voltage on the bit-line in the write phase. By programming a value in a selected capacitor to be opposite of the value written in the write phase of that selected capacitor, time accumulation of disturb is negated. This allows to substantially zero out disturb field on the unselected capacitors of the same bit-cell and/or other unselected bit-cells.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: January 7, 2025
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Tanay Gosavi, James David Clarkson, Neal Reynolds, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 12171103
    Abstract: A configuration for efficiently placing a group of capacitors with one terminal connected to a common node is described. The capacitors are stacked and folded along the common node. In a stack and fold configuration, devices are stacked vertically (directly or with a horizontal offset) with one terminal of the devices being shared to a common node, and further the capacitors are placed along both sides of the common node. The common node is a point of fold. In one example, the devices are capacitors. N number of capacitors can be divided in L number of stack layers such that there are N/L capacitors in each stacked layer. The N/L capacitors are shorted together with an electrode (e.g., bottom electrode). The electrode can be metal, a conducting oxide, or a combination of a conducting oxide and a barrier material. The capacitors can be planar, non-planar or replaced by memory elements.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: December 17, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Patent number: 12166011
    Abstract: Described is a packaging technology to improve performance of an AI processing system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die includes memory and the second die includes computational logic. The first die comprises DRAM having bit-cells. The memory of the first die may store input data and weight factors. The computational logic of the second die is coupled to the memory of the first die. In one example, the second die is an inference die that applies fixed weights for a trained model to an input data to generate an output. In one example, the second die is a training die that enables learning of the weights. Ultra high-bandwidth is changed by placing the first die below the second die. The two dies are wafer-to-wafer bonded or coupled via micro-bumps.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: December 10, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Sasikanth Manipatruni, Amrita Mathuriya, Debo Olaosebikan
  • Publication number: 20240402908
    Abstract: A ferroelectric memory chiplet in a multi-dimensional packaging. The multi-dimensional packaging includes a first die comprising a switch and a first plurality of input-output transceivers. The multi-dimensional packaging includes a second die comprising a processor, wherein the second die includes a second plurality of input-output transceivers coupled to the first plurality of input-output transceivers. The multi-dimensional packaging includes a third die comprising a coherent cache or memory-side buffer, wherein the coherent cache or memory-side buffer comprises ferroelectric memory cells, wherein the coherent cache or memory-side buffer is coupled to the second die via I/Os. The dies are wafer-to-wafer bonded or coupled via micro-bumps, copper-to-copper hybrid bond, or wire bond, Flip-chip ball grid array routing, chip-on-wafer substrate, or embedded multi-die interconnect bridge.
    Type: Application
    Filed: August 15, 2024
    Publication date: December 5, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Patent number: 12155383
    Abstract: A multiplier cell is derived from a 1-bit full adder and an AND gate. The 1-bit full adder is derived from majority and/or minority gates. The majority and/or minority gates include non-linear polar material (e.g., ferroelectric or paraelectric material). A reset mechanism is provided to reset the nodes across the non-linear polar material. The multiplier cell is a hybrid of majority and/or minority gates and complementary metal oxide semiconductor (CMOS) based inverters and/or buffers. The adder uses a non-linear polar capacitor to retain charge with fewer transistors than traditional CMOS sequential circuits. The non-linear polar capacitor includes ferroelectric material, paraelectric material, or non-linear dielectric. Input signals are received by respective terminals of capacitors having non-linear polar material. The other terminals of these capacitors are coupled to a node where the majority function takes place for the inputs.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: November 26, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Patent number: 12147941
    Abstract: A method for monetizing ferroelectric process development is described. In at least one embodiment, the method comprises procuring a target material based on a model driven selection which is based on charge, mass and magnetic moment, and/or mass of the atomic constituents of the target material. The method further comprises applying the target material to a fabrication process to build a ferroelectric device. The method further comprises generating a notification indicative of procurement of the target material and application of the target material. The method further comprises electronically transmitting the notification to a customer, wherein the notification includes an invoice having a line item associated with a cost of the procuring of the target material and application of the target material.
    Type: Grant
    Filed: July 25, 2023
    Date of Patent: November 19, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Niloy Mukherjee, Noriyuki Sato, Tanay Gosavi, Somilkumar J. Rathi, James David Clarkson, Rajeev Kumar Dokania, Debo Olaosebikan, Amrita Mathuriya
  • Patent number: 12147747
    Abstract: A computer-aided design (CAD) tool is provided for logic optimization and synthesis. The CAD tool executes a process that involves optimizing power, performance, and area (PPA) of a logic circuit by minimizing a number of CMOS gates, and majority and/or minority gates in the circuit and its depth. The CAD tool implements a methodology of optimizing logic synthesis based on a mix of standard cell libraries (such as AND, OR, NAND, NOR, XOR, Multiplexer, full adder, half adder, etc.) and varying input majority and minority gates (where the number of inputs in the minority and majority gates could vary as odd numbers from 3 and above). The standard cell libraries cells may contain minority and/or majority gates.
    Type: Grant
    Filed: December 11, 2023
    Date of Patent: November 19, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Ikenna Odinaka, Sasikanth Manipatruni, Darshak Doshi, Rajeev Kumar Dokania, Amrita Mathuriya
  • Publication number: 20240379144
    Abstract: Described herein is a memory bit-cell that results in lower leakage and higher sensing margin. In at least one embodiment, a memory bit-cell comprises a plurality of capacitors, wherein an individual capacitor is coupled to a node and an individual plate-line. In at least one embodiment, memory bit-cell comprises a first transistor coupled to the node. In at least one embodiment, memory bit-cell comprises a second transistor coupled in series with the first transistor, wherein the second transistor is coupled to a bit-line, wherein the first transistor or the second transistor is controllable by a word-line, and wherein the word-line is parallel to the individual plate-line.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Erik Unterborn, Pramod Kolar, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Publication number: 20240379143
    Abstract: Described herein is a memory bit-cell that results in lower leakage and higher sensing margin. In at least one embodiment, a memory bit-cell comprises a plurality of capacitors, wherein an individual capacitor is coupled to a node and an individual plate-line. In at least one embodiment, memory bit-cell comprises a first transistor coupled to the node. In at least one embodiment, memory bit-cell comprises a second transistor coupled in series with the first transistor, wherein the second transistor is coupled to a bit-line, wherein the first transistor or the second transistor is controllable by a word-line, and wherein the word-line is parallel to the individual plate-line.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Erik Unterborn, Pramod Kolar, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Publication number: 20240379733
    Abstract: Ferroelectric capacitor is formed by conformably depositing a non-conductive dielectric over the etched first and second electrodes, and forming a metal cap or helmet over a selective part of the non-conductive dielectric, wherein the metal cap conforms to portions of sidewalls of the non-conductive dielectric. The metal cap is formed by applying physical vapor deposition at a grazing angle to selectively deposit a metal mask over the selective part of the non-conductive dielectric. The metal cap can also be formed by applying ion implantation with tuned etch rate. The method further includes isotopically etching the metal cap and the non-conductive dielectric such that non-conductive dielectric remains on sidewalls of the first and second electrodes but not on the third and fourth electrodes.
    Type: Application
    Filed: July 23, 2024
    Publication date: November 14, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Gaurav Thareja, Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya
  • Publication number: 20240380403
    Abstract: An adder with first and second majority gates. For a 1-bit adder, output from a 3-input majority gate is inverted and input two times to a 5-input majority gate. Other inputs to the 5-input majority gate are same as those of the 3-input majority gate. The output of the 5-input majority gate is a sum while the output of the 3-input majority gate is the carry. Multiple 1-bit adders are concatenated to form an N-bit adder. The input signals are driven to first terminals of non-ferroelectric capacitors while the second terminals are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a non-linear polar capacitor. The second terminal of the capacitor provides the output of the logic gate. A reset mechanism initializes the non-linear polar capacitor before addition function is performed.
    Type: Application
    Filed: July 22, 2024
    Publication date: November 14, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Yuan-Sheng Fang, Robert Menezes, Rajeev Kumar Dokania, Gaurav Thareja, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 12142310
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various examples are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For instance, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Grant
    Filed: September 24, 2021
    Date of Patent: November 12, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni