Patents Assigned to Kepler Computing Inc.
  • Patent number: 12107579
    Abstract: A new class of logic gates are presented that use non-linear polar material. The logic gates include multi-input majority gates. Input signals in the form of digital signals are driven to non-linear input capacitors on their respective first terminals. The second terminals of the non-linear input capacitors are coupled a summing node which provides a majority function of the inputs. In the multi-input majority or minority gates, the non-linear charge response from the non-linear input capacitors results in output voltages close to or at rail-to-rail voltage levels. In some examples, the nodes of the non-linear input capacitors are conditioned once in a while to preserve function of the multi-input majority gates.
    Type: Grant
    Filed: June 9, 2023
    Date of Patent: October 1, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Rafael Rios, Ikenna Odinaka, Robert Menezes, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 12108607
    Abstract: An integration process including an etch stop layer for high density memory and logic applications and methods of fabrication are described. While various examples are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For instance, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Grant
    Filed: October 15, 2021
    Date of Patent: October 1, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Noriyuki Sato, Debraj Guhabiswas, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Sasikanth Manipatruni
  • Publication number: 20240311006
    Abstract: A ferroelectric memory chiplet in a multi-dimensional packaging. The multi-dimensional packaging includes a first die comprising a switch and a first plurality of input-output transceivers. The multi-dimensional packaging includes a second die comprising a processor, wherein the second die includes a second plurality of input-output transceivers coupled to the first plurality of input-output transceivers. The multi-dimensional packaging includes a third die comprising a coherent cache or memory-side buffer, wherein the coherent cache or memory-side buffer comprises ferroelectric memory cells, wherein the coherent cache or memory-side buffer is coupled to the second die via I/Os. The dies are wafer-to-wafer bonded or coupled via micro-bumps, copper-to-copper hybrid bond, or wire bond, Flip-chip ball grid array routing, chip-on-wafer substrate, or embedded multi-die interconnect bridge.
    Type: Application
    Filed: April 13, 2021
    Publication date: September 19, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Patent number: 12094511
    Abstract: A disturb mitigation scheme is described for a 1TnC or multi-element ferroelectric gain bit-cell where after writing to a selected capacitor of the bit-cell, a cure phase is initiated. Between the cure phase and the write phase, there may be zero or more cycles where the selected word-line, bit-line, and plate-lines are pulled-down to ground. The cure phase may occur immediately before the write phase. In the cure phase, the word-line is asserted again just like in the write phase. In the cure phase, the voltage on bit-line is inverted compared to the voltage on the bit-line in the write phase. By programming a value in a selected capacitor to be opposite of the value written in the write phase of that selected capacitor, time accumulation of disturb is negated. This allows to substantially zero out disturb field on the unselected capacitors of the same bit-cell and/or other unselected bit-cells.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: September 17, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Tanay Gosavi, James David Clarkson, Neal Reynolds, Amrita Mathuriya, Sasikanth Manipatruni
  • Patent number: 12096638
    Abstract: A configuration for efficiently placing a group of capacitors with one terminal connected to a common node is described. The capacitors are stacked and folded along the common node. In a stack and fold configuration, devices are stacked vertically (directly or with a horizontal offset) with one terminal of the devices being shared to a common node, and further the capacitors are placed along both sides of the common node. The common node is a point of fold. In one example, the devices are capacitors. N number of capacitors can be divided in L number of stack layers such that there are N/L capacitors in each stacked layer. The N/L capacitors are shorted together with an electrode (e.g., bottom electrode). The electrode can be metal, a conducting oxide, or a combination of a conducting oxide and a barrier material. The capacitors can be planar, non-planar or replaced by memory elements.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: September 17, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Patent number: 12094923
    Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.
    Type: Grant
    Filed: January 31, 2022
    Date of Patent: September 17, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, Fnu Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
  • Patent number: 12088297
    Abstract: An adder with first and second majority gates. For a 1-bit adder, output from a 3-input majority gate is inverted and input two times to a 5-input majority gate. Other inputs to the 5-input majority gate are same as those of the 3-input majority gate. The output of the 5-input majority gate is a sum while the output of the 3-input majority gate is the carry. Multiple 1-bit adders are concatenated to form an N-bit adder. The input signals are driven to first terminals of non-ferroelectric capacitors while the second terminals are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a non-linear polar capacitor. The second terminal of the capacitor provides the output of the logic gate. A reset mechanism initializes the non-linear polar capacitor before addition function is performed.
    Type: Grant
    Filed: May 18, 2023
    Date of Patent: September 10, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Yuan-Sheng Fang, Robert Menezes, Rajeev Kumar Dokania, Gaurav Thareja, Ramamoorthy Ramesh, Amrita Mathuriya
  • Patent number: 12086410
    Abstract: A ferroelectric memory chiplet in a multi-dimensional packaging. The multi-dimensional packaging includes a first die comprising a switch and a first plurality of input-output transceivers. The multi-dimensional packaging includes a second die comprising a processor, wherein the second die includes a second plurality of input-output transceivers coupled to the first plurality of input-output transceivers. The multi-dimensional packaging includes a third die comprising a coherent cache or memory-side buffer, wherein the coherent cache or memory-side buffer comprises ferroelectric memory cells, wherein the coherent cache or memory-side buffer is coupled to the second die via I/Os. The dies are wafer-to-wafer bonded or coupled via micro-bumps, copper-to-copper hybrid bond, or wire bond, Flip-chip ball grid array routing, chip-on-wafer substrate, or embedded multi-die interconnect bridge.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: September 10, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Patent number: 12087730
    Abstract: A configuration for efficiently placing a group of capacitors with one terminal connected to a common node is described. The capacitors are stacked and folded along the common node. In a stack and fold configuration, devices are stacked vertically (directly or with a horizontal offset) with one terminal of the devices being shared to a common node, and further the capacitors are placed along both sides of the common node. The common node is a point of fold. In one example, the devices are capacitors. N number of capacitors can be divided in L number of stack layers such that there are N/L capacitors in each stacked layer. The N/L capacitors are shorted together with an electrode (e.g., bottom electrode). The electrode can be metal, a conducting oxide, or a combination of a conducting oxide and a barrier material. The capacitors can be planar, non-planar or replaced by memory elements.
    Type: Grant
    Filed: March 11, 2022
    Date of Patent: September 10, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Patent number: 12079475
    Abstract: A ferroelectric memory chiplet in a multi-dimensional packaging. The multi-dimensional packaging includes a first die comprising a switch and a first plurality of input-output transceivers. The multi-dimensional packaging includes a second die comprising a processor, wherein the second die includes a second plurality of input-output transceivers coupled to the first plurality of input-output transceivers. The multi-dimensional packaging includes a third die comprising a coherent cache or memory-side buffer, wherein the coherent cache or memory-side buffer comprises ferroelectric memory cells, wherein the coherent cache or memory-side buffer is coupled to the second die via I/Os. The dies are wafer-to-wafer bonded or coupled via micro-bumps, copper-to-copper hybrid bond, or wire bond, Flip-chip ball grid array routing, chip-on-wafer substrate, or embedded multi-die interconnect bridge.
    Type: Grant
    Filed: April 13, 2021
    Date of Patent: September 3, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Patent number: 12069866
    Abstract: A pocket integration for high density memory and logic applications and methods of fabrication are described. While various embodiments are described with reference to FeRAM, capacitive structures formed herein can be used for any application where a capacitor is desired. For example, the capacitive structure can be used for fabricating ferroelectric based or paraelectric based majority gate, minority gate, and/or threshold gate.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: August 20, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Noriyuki Sato, Tanay Gosavi, Niloy Mukherjee, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20240276735
    Abstract: A method of fabricating a device comprises forming a multi-layer stack above a first substrate, where multi-layer stack includes a non-linear polar material. In at least one embodiment, method further includes forming a first conductive layer on multi-layer stack and annealing multi-layer stack. A transistor is formed above a second substrate. In at least one embodiment, method also includes forming a second conductive layer above electrode structure and bonding first conductive layer with second conductive layer. After bonding, method includes removing at least a portion of first substrate patterning multi-layer stack to form a memory device.
    Type: Application
    Filed: August 12, 2023
    Publication date: August 15, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Biswajeet Guha, Mauricio Manfrini, Noriyuki Sato, James David Clarkson, Abel Fernandez, Somilkumar J. Rathi, Niloy Mukherjee, Tanay Gosavi, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20240276734
    Abstract: A method of fabricating a device comprises forming a multi-layer stack above a first substrate, where multi-layer stack includes a non-linear polar material. In at least one embodiment, method further includes forming a first conductive layer on multi-layer stack and annealing multi-layer stack. A transistor is formed above a second substrate. In at least one embodiment, method also includes forming a second conductive layer above electrode structure and bonding first conductive layer with second conductive layer. After bonding, method includes removing at least a portion of first substrate patterning multi-layer stack to form a memory device.
    Type: Application
    Filed: August 12, 2023
    Publication date: August 15, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Biswajeet Guha, Mauricio Manfrini, Noriyuki Sato, James David Clarkson, Abel Fernandez, Somilkumar J. Rathi, Niloy Mukherjee, Tanay Gosavi, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Publication number: 20240274651
    Abstract: A method of fabricating a device comprises forming a multi-layer stack above a first substrate, where multi-layer stack includes a non-linear polar material. In at least one embodiment, method further includes forming a first conductive layer on multi-layer stack and annealing multi-layer stack. A transistor is formed above a second substrate. In at least one embodiment, method also includes forming a second conductive layer above electrode structure and bonding first conductive layer with second conductive layer. After bonding, method includes removing at least a portion of first substrate patterning multi-layer stack to form a memory device.
    Type: Application
    Filed: August 11, 2023
    Publication date: August 15, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Biswajeet Guha, Mauricio Manfrini, Noriyuki Sato, James David Clarkson, Abel Fernandez, Somilkumar J. Rathi, Niloy Mukherjee, Tanay Gosavi, Amrita Mathuriya, Rajeev Kumar Dokania, Sasikanth Manipatruni
  • Patent number: 12062584
    Abstract: A method to deposit a multi-layer stack for device applications includes implementing a model driven target selection for deposition. One or more targets may be procured with an initial stoichiometric composition or elemental purity. The targets may be utilized to form the multi-layer stack, and measurements may be made of chemical composition and electrical properties of the multi-layer stack. The measurements may be compared to reference target values and if measurement results are not within tolerance, the composition of the targets can be changed to yield a successive multi-layer stack. The process can be iterated until measurement results are within tolerance of target results. Additional experimentation with post deposition thermal anneal can be performed to optimize multi-layer stack properties.
    Type: Grant
    Filed: October 28, 2022
    Date of Patent: August 13, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Niloy Mukherjee, Noriyuki Sato, Tanay Gosavi, Mauricio Manfrini, Somilkumar J. Rathi, James David Clarkson, Rajeev Kumar Dokania, Debo Olaosebikan, Amrita Mathuriya
  • Publication number: 20240257854
    Abstract: Described herein is a memory bit-cell that results in lower leakage and higher sensing margin. In at least one embodiment, a memory bit-cell comprises a plurality of capacitors, wherein an individual capacitor is coupled to a node and an individual plate-line. In at least one embodiment, memory bit-cell comprises a first transistor coupled to the node. In at least one embodiment, memory bit-cell comprises a second transistor coupled in series with the first transistor, wherein the second transistor is coupled to a bit-line, wherein the first transistor or the second transistor is controllable by a word-line, and wherein the word-line is parallel to the individual plate-line.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 1, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Erik Unterborn, Pramod Kolar, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Patent number: 12041785
    Abstract: A configuration for efficiently placing a group of capacitors with one terminal connected to a common node is described. The capacitors are stacked and folded along the common node. In a stack and fold configuration, devices are stacked vertically (directly or with a horizontal offset) with one terminal of the devices being shared to a common node, and further the capacitors are placed along both sides of the common node. The common node is a point of fold. In one example, the devices are capacitors. N number of capacitors can be divided in L number of stack layers such that there are N/L capacitors in each stacked layer. The N/L capacitors are shorted together with an electrode (e.g., bottom electrode). The electrode can be metal, a conducting oxide, or a combination of a conducting oxide and a barrier material. The capacitors can be planar, non-planar or replaced by memory elements.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: July 16, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
  • Patent number: 12026034
    Abstract: A packaging technology to improve performance of an AI processing system resulting in an ultra-high bandwidth system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die can be a first logic die (e.g., a compute chip, CPU, GPU, etc.) while the second die can be a compute chiplet comprising ferroelectric or paraelectric logic. Both dies can include ferroelectric or paraelectric logic. The ferroelectric/paraelectric logic may include AND gates, OR gates, complex gates, majority, minority, and/or threshold gates, sequential logic, etc. The IC package can be in a 3D or 2.5D configuration that implements logic-on-logic stacking configuration. The 3D or 2.5D packaging configurations have chips or chiplets designed to have time distributed or spatially distributed processing. The logic of chips or chiplets is segregated so that one chip in a 3D or 2.5D stacking arrangement is hot at a time.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: July 2, 2024
    Assignee: Kepler Computing Inc.
    Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
  • Patent number: 12029043
    Abstract: A device includes, in a first region, a first conductive interconnect, an electrode structure on the first conductive interconnect, where the electrode structure includes a first conductive hydrogen barrier layer and a first conductive fill material. A trench capacitor including a ferroelectric material or a paraelectric material is on the electrode structure. A second dielectric includes an amorphous, greater than 90% film density hydrogen barrier material laterally surrounds the memory device. A via electrode including a second conductive hydrogen barrier material is on at least a portion of the memory device. A second region includes a conductive interconnect structure embedded within a less than 90% film density dielectric material.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: July 2, 2024
    Assignee: KEPLER COMPUTING INC.
    Inventors: Somilkumar J. Rathi, Noriyuki Sato, Niloy Mukherjee, Rajeev Kumar Dokania, Amrita Mathuriya, Tanay Gosavi, Pratyush Pandey, Jason Y. Wu, Sasikanth Manipatruni
  • Publication number: 20240211872
    Abstract: A method for monetizing ferroelectric process development is described. In at least one embodiment, the method comprises procuring a target material based on a model driven selection which is based on charge, mass and magnetic moment, and/or mass of the atomic constituents of the target material. The method further comprises applying the target material to a fabrication process to build a ferroelectric device. The method further comprises generating a notification indicative of procurement of the target material and application of the target material. The method further comprises electronically transmitting the notification to a customer, wherein the notification includes an invoice having a line item associated with a cost of the procuring of the target material and application of the target material.
    Type: Application
    Filed: July 25, 2023
    Publication date: June 27, 2024
    Applicant: Kepler Computing Inc.
    Inventors: Sasikanth Manipatruni, Niloy Mukherjee, Noriyuki Sato, Tanay Gosavi, Somilkumar J. Rathi, James David Clarkson, Rajeev Kumar Dokania, Debo Olaosebikan, Amrita Mathuriya