Patents Assigned to Kepler Computing Inc.
-
Patent number: 11949018Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.Type: GrantFiled: December 19, 2022Date of Patent: April 2, 2024Assignee: Kepler Computing Inc.Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
-
Publication number: 20240099018Abstract: Approaches for integrating FE memory arrays into a processor, and the resulting structures are described. Simultaneous integrations of regions with ferroelectric (FE) cells and regions with standard interconnects are also described. FE cells include FE capacitors that include a FE stack of layers, which is encapsulated with a protection material. The protection material protects the FE stack of layers as structures for regular logic are fabricated in the same die.Type: ApplicationFiled: August 15, 2023Publication date: March 21, 2024Applicant: Kepler Computing Inc.Inventors: Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Gaurav Thareja, Amrita Mathuriya
-
Patent number: 11922105Abstract: A computer-aided design (CAD) tool is provided for logic optimization and synthesis. The CAD tool executes a process that involves optimizing power, performance, and area (PPA) of a logic circuit by minimizing a number of CMOS gates, and majority and/or minority gates in the circuit and its depth. The CAD tool implements a methodology of optimizing logic synthesis based on a mix of standard cell libraries (such as AND, OR, NAND, NOR, XOR, Multiplexer, full adder, half adder, etc.) and varying input majority and minority gates (where the number of inputs in the minority and majority gates could vary as odd numbers from 3 and above). The standard cell libraries cells may contain minority and/or majority gates.Type: GrantFiled: November 10, 2021Date of Patent: March 5, 2024Assignee: Kepler Computing Inc.Inventors: Ikenna Odinaka, Sasikanth Manipatruni, Darshak Doshi, Rajeev Kumar Dokania, Amrita Mathuriya
-
Patent number: 11916149Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a transistor formed on a silicon substrate and a capacitor electrically connected to the transistor by a conductive via. The capacitor comprises upper and lower conductive oxide electrodes on opposing sides of a polar layer, wherein the lower conductive oxide electrode is electrically connected to a drain of the transistor.Type: GrantFiled: July 22, 2022Date of Patent: February 27, 2024Assignee: Kepler Computing Inc.Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
-
Patent number: 11908943Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.Type: GrantFiled: March 9, 2023Date of Patent: February 20, 2024Assignee: Kepler Computing Inc.Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
-
Publication number: 20240047426Abstract: Described is a packaging technology to improve performance of an AI processing system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die includes memory and the second die includes computational logic. The first die comprises a ferroelectric RAM (FeRAM) having bit-cells. Each bit-cell comprises an access transistor and a capacitor including ferroelectric material. The access transistor is coupled to the ferroelectric material. The FeRAM can be FeDRAM or FeSRAM. The memory of the first die may store input data and weight factors. The computational logic of the second die is coupled to the memory of the first die. The second die is an inference die that applies fixed weights for a trained model to an input data to generate an output. In one example, the second die is a training die that enables learning of the weights.Type: ApplicationFiled: July 25, 2023Publication date: February 8, 2024Applicant: Kepler Computing Inc.Inventors: Sasikanth Manipatruni, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh
-
Patent number: 11888066Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.Type: GrantFiled: December 16, 2022Date of Patent: January 30, 2024Assignee: Kepler Computing Inc.Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
-
Patent number: 11888067Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.Type: GrantFiled: March 10, 2023Date of Patent: January 30, 2024Assignee: Kepler Computing Inc.Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
-
Publication number: 20230420022Abstract: Described is a low power, high-density non-volatile differential memory bit-cell. The transistors of the differential memory bit-cell can be planar or non-planer and can be fabricated in the frontend or backend of a die. A bit-cell of the non-volatile differential memory bit-cell comprises first transistor first non-volatile structure that are controlled to store data of a first value. Another bit-cell of the non-volatile differential memory bit-cell comprises second transistor and second non-volatile structure that are controlled to store data of a second value, wherein the first value is an inverse of the second value. The first and second volatile structures comprise ferroelectric material (e.g., perovskite, hexagonal ferroelectric, improper ferroelectric).Type: ApplicationFiled: April 28, 2021Publication date: December 28, 2023Applicant: Kepler Computing Inc.Inventors: Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh
-
Patent number: 11848386Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.Type: GrantFiled: March 9, 2023Date of Patent: December 19, 2023Assignee: Kepler Computing Inc.Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
-
Publication number: 20230395134Abstract: A disturb mitigation scheme is described for a 1TnC or multi-element ferroelectric gain bit-cell where after writing to a selected capacitor of the bit-cell, a cure phase is initiated. Between the cure phase and the write phase, there may be zero or more cycles where the selected word-line, bit-line, and plate-lines are pulled-down to ground. The cure phase may occur immediately before the write phase. In the cure phase, the word-line is asserted again just like in the write phase. In the cure phase, the voltage on bit-line is inverted compared to the voltage on the bit-line in the write phase. By programming a value in a selected capacitor to be opposite of the value written in the write phase of that selected capacitor, time accumulation of disturb is negated. This allows to substantially zero out disturb field on the unselected capacitors of the same bit-cell and/or other unselected bit-cells.Type: ApplicationFiled: June 3, 2022Publication date: December 7, 2023Applicant: Kepler Computing Inc.Inventors: Rajeev Kumar Dokania, Mustansir Yunus Mukadam, Tanay Gosavi, James David Clarkson, Neal Reynolds, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11837664Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor, which in turn comprises a polar layer comprising a crystalline base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen, wherein the dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV.Type: GrantFiled: October 10, 2022Date of Patent: December 5, 2023Assignee: Kepler Computing Inc.Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
-
Patent number: 11791233Abstract: A packaging technology to improve performance of an AI processing system resulting in an ultra-high bandwidth system. An IC package is provided which comprises: a substrate; a first die on the substrate, and a second die stacked over the first die. The first die can be a first logic die (e.g., a compute chip, CPU, GPU, etc.) while the second die can be a compute chiplet comprising ferroelectric or paraelectric logic. Both dies can include ferroelectric or paraelectric logic. The ferroelectric/paraelectric logic may include AND gates, OR gates, complex gates, majority, minority, and/or threshold gates, sequential logic, etc. The IC package can be in a 3D or 2.5D configuration that implements logic-on-logic stacking configuration. The 3D or 2.5D packaging configurations have chips or chiplets designed to have time distributed or spatially distributed processing. The logic of chips or chiplets is segregated so that one chip in a 3D or 2.5D stacking arrangement is hot at a time.Type: GrantFiled: August 6, 2021Date of Patent: October 17, 2023Assignee: Kepler Computing Inc.Inventors: Amrita Mathuriya, Christopher B. Wilkerson, Rajeev Kumar Dokania, Debo Olaosebikan, Sasikanth Manipatruni
-
Publication number: 20230308102Abstract: An adder with first and second majority gates. For a 1-bit adder, output from a 3-input majority gate is inverted and input two times to a 5-input majority gate. Other inputs to the 5-input majority gate are same as those of the 3-input majority gate. The output of the 5-input majority gate is a sum while the output of the 3-input majority gate is the carry. Multiple 1-bit adders are concatenated to form an N-bit adder. The input signals are driven to first terminals of non-ferroelectric capacitors while the second terminals are coupled to form a majority node. Majority function of the input signals occurs on this node. The majority node is then coupled to a first terminal of a non-linear polar capacitor. The second terminal of the capacitor provides the output of the logic gate. A reset mechanism initializes the non-linear polar capacitor before addition function is performed.Type: ApplicationFiled: May 18, 2023Publication date: September 28, 2023Applicant: Kepler Computing, Inc.Inventors: Sasikanth Manipatruni, Yuan-Sheng Fang, Robert Menezes, Rajeev Kumar Dokania, Guarav Thareja, Ramamoorthy Ramesh, Amrita Mathuriya
-
Publication number: 20230301113Abstract: A device structure comprises a first conductive interconnect, an electrode structure on the first conductive interconnect, an etch stop layer laterally surrounding the electrode structure; a plurality of memory devices above the electrode structure, where individual ones of the plurality of memory devices comprise a dielectric layer comprising a perovskite material. The device structure further comprises a plate electrode coupled between the plurality of memory devices and the electrode structure, where the plate electrode is in direct contact with a respective lower most conductive layer of the individual ones of the plurality of memory devices. The device structure further includes an insulative hydrogen barrier layer on at least a sidewall of the individual ones of the plurality of memory devices; and a plurality of via electrodes, wherein individual ones of the plurality of via electrodes are on a respective one of the individual ones of the plurality of memory devices.Type: ApplicationFiled: March 18, 2022Publication date: September 21, 2023Applicant: Kepler Computing Inc.Inventors: Noriyuki Sato, Tanay Gosavi, Rafael Rios, Amrita Mathuriya, Niloy Mukherjee, Mauricio Manfrini, Rajeev Kumar Dokania, Somilkumar J. Rathi, Sasikanth Manipatruni
-
Publication number: 20230298905Abstract: A memory device includes a first electrode comprising a first conductive nonlinear polar material, where the first conductive nonlinear polar material comprises a first average grain length. The memory device further includes a dielectric layer comprising a perovskite material on the first electrode, where the perovskite material includes a second average grain length. A second electrode comprising a second conductive nonlinear polar material is on the dielectric layer, where the second conductive nonlinear polar material includes a third grain average length that is less than or equal to the first average grain length or the second average grain length.Type: ApplicationFiled: February 1, 2022Publication date: September 21, 2023Applicant: Kepler Computing Inc.Inventors: Niloy Mukherjee, Somilkumar J. Rathi, Jason Y. Wu, Pratyush Pandey, Zeying Ren, FNU Atiquzzaman, Gabriel Antonio Paulius Velarde, Noriyuki Sato, Mauricio Manfrini, Tanay Gosavi, Rajeev Kumar Dokania, Amrita Mathuriya, Ramamoorthy Ramesh, Sasikanth Manipatruni
-
Patent number: 11758708Abstract: To compensate switching of a dielectric component of a non-linear polar material based capacitor, an explicit dielectric capacitor is added to a memory bit-cell and controlled by a signal opposite to the signal driven on a plate-line.Type: GrantFiled: November 2, 2021Date of Patent: September 12, 2023Assignee: Kepler Computing Inc.Inventors: Rajeev Kumar Dokania, Noriyuki Sato, Tanay Gosavi, Amrita Mathuriya, Sasikanth Manipatruni
-
Patent number: 11757043Abstract: The disclosed technology generally relates to ferroelectric materials and semiconductor devices, and more particularly to semiconductor memory devices incorporating doped polar materials. In one aspect, a semiconductor device comprises a capacitor which in turn comprises a polar layer comprising a base polar material doped with a dopant. The base polar material includes one or more metal elements and one or both of oxygen or nitrogen. The dopant comprises a metal element that is different from the one or more metal elements and is present at a concentration such that a ferroelectric switching voltage of the capacitor is different from that of the capacitor having the base polar material without being doped with the dopant by more than about 100 mV. The capacitor stack additionally comprises first and second crystalline conductive oxide electrodes on opposing sides of the polar layer.Type: GrantFiled: August 12, 2022Date of Patent: September 12, 2023Assignee: Kepler Computing Inc.Inventors: Ramesh Ramamoorthy, Sasikanth Manipatruni, Gaurav Thareja
-
Publication number: 20230284456Abstract: A configuration for efficiently placing a group of capacitors with one terminal connected to a common node is described. The capacitors are stacked and folded along the common node. In a stack and fold configuration, devices are stacked vertically (directly or with a horizontal offset) with one terminal of the devices being shared to a common node, and further the capacitors are placed along both sides of the common node. The common node is a point of fold. In one example, the devices are capacitors. N number of capacitors can be divided in L number of stack layers such that there are N/L capacitors in each stacked layer. The N/L capacitors are shorted together with an electrode (e.g., bottom electrode). The electrode can be metal, a conducting oxide, or a combination of a conducting oxide and a barrier material. The capacitors can be planar, non-planar or replaced by memory elements.Type: ApplicationFiled: March 15, 2022Publication date: September 7, 2023Applicant: Kepler Computing Inc.Inventors: Rajeev Kumar Dokania, Amrita Mathuriya, Debo Olaosebikan, Tanay Gosavi, Noriyuki Sato, Sasikanth Manipatruni
-
Publication number: 20230284455Abstract: The memory bit-cell formed using the ferroelectric capacitor results in a taller and narrower bit-cell compared to traditional memory bit-cells. As such, more bit-cells can be packed in a die resulting in a higher density memory that can operate at lower voltages than traditional memories while providing the much sought after non-volatility behavior. The pillar capacitor includes a plug that assists in fabricating a narrow pillar.Type: ApplicationFiled: August 30, 2022Publication date: September 7, 2023Applicant: Kepler Computing Inc.Inventors: Gaurav Thareja, Sasikanth Manipatruni, Rajeev Kumar Dokania, Ramamoorthy Ramesh, Amrita Mathuriya