Patents Assigned to KLA Corporation
  • Patent number: 11955308
    Abstract: Methods and systems for realizing a high speed, rotating anode based x-ray illumination source suitable for high throughput x-ray metrology are presented herein. A high speed rotating anode includes a water cooled rotating platen supported by radial and thrust air bearings employing cascaded differential pumping. A very high bending stiffness of the rotating assembly is achieved by spacing radial air bearings far apart and locating a rotary motor and thrust bearings between the radial air bearings. The high bending stiffness increases the mechanical stability of the rotating assembly during high speed operation, and thus decreases vibration at the location of impingement of the electron beam on the rotating anode material. In some embodiments, magnetic thrust bearings are employed and the air gap is controlled to maintain a desired gap over an operational range of up to three millimeters.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: April 9, 2024
    Assignee: KLA Corporation
    Inventor: Michel Pharand
  • Publication number: 20240110549
    Abstract: A thermo-pump includes a sealed casing, divided into a main casing volume and one or more secondary volumes. A thermo-pump includes a shaft. A thermo-pump includes a displacer, coupled to the shaft and oscillates to create a pressure gain between a high-pressure phase and a low-pressure phase. A thermo-pump includes one or more displacer rings, wherein the displacer rings are made from a material with thermal properties below a threshold. A thermo-pump includes an insert, wherein the insert is configured to form a perimeter of the main casing volume, wherein the insert is made from a material with thermal properties below the threshold. A thermo-pump includes one or more bushings, wherein the one or more bushing separate the main casing volume and the one or more secondary volumes. A thermo-pump includes one or more gas bearings configured to prevent contact between the shaft and the sealed casing.
    Type: Application
    Filed: September 14, 2023
    Publication date: April 4, 2024
    Applicant: KLA Corporation
    Inventor: Anatoly Shchemelinin
  • Patent number: 11946890
    Abstract: To measure the resistance area product of a high resistivity layer using a microscopic multi point probe, the high resistivity layer is sandwiched between two conducting layers. A plurality of electrode configurations/positions is used to perform three voltage or resistance measurements. An equivalent electric circuit model/three layer model is used to determine the resistance area product as a function of the three measurements.
    Type: Grant
    Filed: May 12, 2022
    Date of Patent: April 2, 2024
    Assignee: KLA CORPORATION
    Inventors: Frederik Westergaard Osterberg, Kristoffer Gram Kalhauge, Mikkel Fougt Hansen
  • Publication number: 20240105440
    Abstract: A pulse-assisted LSP broadband light source in flowing high-pressure liquid or supercritical fluid is disclosed. The light source includes a fluid containment structure for containing a high-pressure liquid or supercritical fluid. The light source includes a primary laser pump source and a high-repetition pulse-assisting laser light source. wherein the primary laser pump source is configured to direct a primary pump beam into a plasma-forming region of the fluid. The primary beam and the pulsed-assisting beam are configured to sustain a plasma within the plasma-forming region of the fluid within the fluid containment structure. A light collector element is configured to collect broadband light emitted from the plasma for use in downstream applications.
    Type: Application
    Filed: September 25, 2023
    Publication date: March 28, 2024
    Applicant: KLA Corporation
    Inventors: Ilya Bezel, Oleg Khodykin, John Szilagyi
  • Patent number: 11933717
    Abstract: A metrology system may include a metrology tool to selectively perform metrology measurements in a static mode in which one or more metrology targets on a sample are stationary during a measurement or a scanning mode in which one or more metrology targets are in motion during a measurement, and a controller communicatively coupled to the translation stage and at least one of the one or more detectors. The controller may receive locations of metrology targets on the sample to be inspected, designate the metrology targets for inspection with the static mode or the scanning mode, direct the metrology tool to perform metrology measurements on the metrology targets in the static mode or the scanning mode based on the designation, and generate metrology data for the sample based on the metrology measurements on the metrology targets.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: March 19, 2024
    Assignee: KLA Corporation
    Inventors: Andrew V. Hill, Amnon Manassen, Yoram Uziel, Yossi Simon, Gilad Laredo
  • Patent number: 11927549
    Abstract: The present disclosure provides an inspection system and a method of stray field mitigation. The system includes an array of electron beam columns, a first permanent magnet array, and a plurality of shielding plates. The array of electron beam columns each includes an electron source configured to emit electrons toward a stage. The first permanent magnet array is configured to condense the electrons from each electron source into an array of electron beams. The first permanent magnet array is arranged at a first end of the array of electron beam columns. The plurality of shielding plates extend across the array electron beam columns downstream of the first permanent magnet array in a direction of electron emission. The array of electron beams pass through a plurality of apertures in each of the plurality of shielding plates, which reduces stray magnetic field in a radial direction of the array of electron beams.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: March 12, 2024
    Assignee: KLA CORPORATION
    Inventors: Qian Zhang, Wayne Chiwoei Lo, Joseph Maurino, Tomas Plettner
  • Publication number: 20240079203
    Abstract: An array of localized auto-focus sensors provides direct measurement of the working distance between each microscope column in the array and the substrate being imaged below. The auto-focus sensors measure the working distance between each column and the imaging substrate as it passes over a point on the substrate to be imaged. The working distance measurement from the sensors is input into a control system, which in turn outputs the required working distance adjustment to the microscope column. The control system independently adjusts microscope working distance and/or physical distance of an individual microscope column in a multi-column microscope based on auto-focus sensor input. The individual microscope columns in the multi-column microscope can also be used as the auto-focus sensor itself.
    Type: Application
    Filed: September 7, 2022
    Publication date: March 7, 2024
    Applicant: KLA Corporation
    Inventors: Nicholas Petrone, Lawrence Muray, Alan Brodie
  • Patent number: 11921297
    Abstract: A system for generating pump illumination for laser sustained plasma (LSP) is disclosed. The system may include an illumination source configured to output a pump beam, one or more focusing optics, and one or more beam shapers configured to reshape the pump beam to provide a shaped pupil power distribution at an illumination pupil plane of the one or more focusing optics. The shaped pupil power distribution may include at least one of a flat-top distribution or an inverted distribution with a central local intensity minimum. Further, the one or more focusing optics may receive the pump beam from the one or more beam shapers and direct the pump beam to a plasma-forming material, whereby the pump beam at least one of forms or maintains a plasma that emits broadband illumination.
    Type: Grant
    Filed: February 28, 2022
    Date of Patent: March 5, 2024
    Assignee: KLA Corporation
    Inventors: Ilya Bezel, Matthew Derstine, Andrey Stepanov, Nikolay Sherbak
  • Patent number: 11923185
    Abstract: A method of forming a high-pressure plasma lamp includes providing a lamp bulb. The lamp bulb includes a top channel and a bottom channel. The method includes inserting a top electrode element into the top channel of the lamp bulb. The method includes providing a glass tubular structure attached to a bottom electrode element. The method includes filling the lamp bulb with a liquified gas through the bottom channel of the lamp bulb. The method includes inserting the bottom electrode element and the glass tubular structure into the bottom channel.
    Type: Grant
    Filed: June 10, 2022
    Date of Patent: March 5, 2024
    Assignee: KLA Corporation
    Inventors: Mark S. Wang, Joshua Wittenberg
  • Patent number: 11921052
    Abstract: An inspection system may generate first-step images of multiple sample regions after a first process step and generate second-step images of the sample regions after a second process step, where the second process step modifies the sample in at least one of the sample regions. The system may further identify one of the sample regions as a test region and at least some of the remaining sample regions as comparison regions, where the second-step image of the test region is a test image and the second-step images of the comparison regions are comparison images. The system may further generate a multi-step difference image by subtracting a combination of at least one of the second-step comparison images and at least two of the first-step images from the test image. The system may further identify defects in the test region associated with the second process step based on the multi-step difference image.
    Type: Grant
    Filed: March 29, 2023
    Date of Patent: March 5, 2024
    Assignee: KLA Corporation
    Inventors: Robert M. Danen, Sangbong Park, Dmitri Starodub, Abdurrahman Sezginer
  • Patent number: 11922619
    Abstract: A context-based inspection system is disclosed. The system may include an optical imaging sub-system. The system may further include one or more controllers communicatively coupled to the optical imaging system. The one or more controllers may be configured to: receive one or more reference images; receive one or more test images of a sample; generate one or more probabilistic context maps during inspection runtime using an unsupervised classifier; provide the generated one or more probabilistic context maps to a supervised classifier during the inspection runtime; and apply the supervised classifier to the received one or more test images to identify one or more DOIs on the sample.
    Type: Grant
    Filed: March 29, 2023
    Date of Patent: March 5, 2024
    Assignee: KLA Corporation
    Inventors: Brian Duffy, Bradley Ries, Laurent Karsenti, Kuljit S. Virk, Asaf J. Elron, Ruslan Berdichevsky, Oriel Ben Shmuel, Shlomi Fenster, Yakir Gorski, Oren Dovrat, Ron Dekel, Emanuel Garbin, Sasha Smekhov
  • Patent number: 11921825
    Abstract: A metrology system includes one or more through-focus imaging metrology sub-systems communicatively coupled to a controller having one or more processors configured to receive a plurality of training images captured at one or more focal positions. The one or more processors may generate a machine learning classifier based on the plurality of training images. The one or more processors may receive one or more target feature selections for one or more target overlay measurements corresponding to one or more target features. The one or more processors may determine one or more target focal positions based on the one or more target feature selections using the machine learning classifier. The one or more processors may receive one or more target images captured at the one or more target focal positions, the target images including the one or more target features of the target specimen, and determine overlay based thereon.
    Type: Grant
    Filed: January 16, 2023
    Date of Patent: March 5, 2024
    Assignee: KLA Corporation
    Inventors: Etay Lavert, Amnon Manassen, Yossi Simon, Dimitry Sanko, Avner Safrani
  • Patent number: 11913874
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: February 27, 2024
    Assignee: KLA Corporation
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Patent number: 11914290
    Abstract: A device area includes at least a first layer of photoresist and a second layer of photoresist. First layer metrology targets are positioned at an edge of one of the sides of the first layer of the mat. The first layer metrology targets have a relaxed pitch less than a device pitch. Secondary electron and back-scattered electron images can be simultaneously obtained.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: February 27, 2024
    Assignee: KLA CORPORATION
    Inventor: Hong Xiao
  • Publication number: 20240063248
    Abstract: An image sensor is fabricated by first heavily p-type doping the thin top monocrystalline silicon substrate of an SOI wafer, then forming a relatively lightly p-doped epitaxial layer on a top surface of the top silicon substrate, where p-type doping levels during these two processes are controlled to produce a p-type dopant concentration gradient in the top silicon substrate. Sensing (circuit) elements and associated metal interconnects are fabricated on the epitaxial layer, then the handling substrate and oxide layer of the SOI wafer are at least partially removed to expose a lower surface of either the top silicon substrate or the epitaxial layer, and then a pure boron layer is formed on the exposed lower surface. The p-type dopant concentration gradient monotonically decreases from a maximum level near the top-silicon/epitaxial-layer interface to a minimum concentration level at the epitaxial layer's upper surface.
    Type: Application
    Filed: November 5, 2023
    Publication date: February 22, 2024
    Applicant: KLA Corporation
    Inventors: Abbas Haddadi, Sisir Yalamanchili, John Fielden, Yung-Ho Alex Chuang
  • Patent number: 11908722
    Abstract: A teaching substrate is loaded into a load port of an equipment front-end module (EFEM) of a fabrication or inspection tool. The EFEM includes a substrate-handling robot. The teaching substrate includes a plurality of sensors and one or more wireless transceivers. The tool includes a plurality of stations. With the teaching substrate in the EFEM, the substrate-handling robot moves along an initial route and sensor data are wirelessly received from the teaching substrate. Based at least in part on the sensor data, a modified route distinct from the initial route is determined. The substrate-handling robot moves along the modified route, handling the teaching substrate. Based at least in part on the sensor data, positions of the plurality of stations are determined.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: February 20, 2024
    Assignee: KLA Corporation
    Inventors: Avner Safrani, Shai Mark, Amir Aizen, Maor Arbit
  • Patent number: 11899338
    Abstract: A nonlinear crystal including stacked strontium tetraborate SrB4O7 (SBO) crystal plates that are cooperatively configured to create a periodic structure for quasi-phase-matching (QPM) is used in the final frequency doubling stage of a laser assembly to generate laser output light having a wavelength in the range of about 180 nm to 200 nm. One or more fundamental laser beams are frequency doubled, down-converted and/or summed using one or more frequency conversion stages to generate an intermediate frequency light with a corresponding wavelength in the range of about 360 nm to 400 nm, and then the final frequency converting stage utilizes the nonlinear crystal to double the frequency of the intermediate frequency light to generate the desired laser output light at high power. Methods, inspection systems, lithography systems and cutting systems incorporating the laser assembly are also described.
    Type: Grant
    Filed: November 21, 2022
    Date of Patent: February 13, 2024
    Assignee: KLA Corporation
    Inventors: Yung-Ho Alex Chuang, Kelly Mauser, Baigang Zhang, Xuefeng Liu, John Fielden, Yinying Xiao-Li, Elena Loginova
  • Patent number: 11899065
    Abstract: Systems and methods for generating defect criticality are disclosed. Such systems and methods may include identifying defect results including a defect and a defect location. Such systems and methods may include receiving fault test recipes configured to test potential faults at a plurality of testing locations. Such systems and methods may include identifying a plurality of N-detect parameters based on a countable number of times the fault test recipes are configured to test a potential fault. Such systems and methods may include determining a plurality of weighting parameters based on the plurality of N-detect parameters. Such systems and methods may include generating the defect criticality for the defect based on a proximity between the plurality of testing locations and the defect location and the plurality of weighting.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: February 13, 2024
    Assignee: KLA Corporation
    Inventors: David W. Price, Robert J. Rathert, Chet V. Lenox, Oreste Donzella
  • Patent number: 11899375
    Abstract: A multi-column metrology tool may include two or more measurement columns distributed along a column direction, where the two or more measurement columns simultaneously probe two or more measurement regions on a sample including metrology targets. A measurement column may include an illumination sub-system to direct illumination to the sample, a collection sub-system including a collection lens to collect measurement signals from the sample and direct it to one or more detectors, and a column-positioning sub-system to adjust a position of the collection lens. A measurement region of a measurement column may be defined by a field of view of the collection lens and a range of the positioning system in the lateral plane. The tool may further include a sample-positioning sub-system to scan the sample along a scan path different than the column direction to position metrology targets within the measurement regions of the measurement columns for measurements.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: February 13, 2024
    Assignee: KLA Corporation
    Inventors: Jonathan Madsen, Andrei V. Shchegrov, Amnon Manassen, Andrew V. Hill, Yossi Simon, Gilad Laredo, Yoram Uziel
  • Patent number: 11892493
    Abstract: An apparatus, a method and a computer program product for defect detection in work pieces is disclosed. At least one light source is provided and the light source generates an illumination light of a wavelength range at which the work piece is transparent. A camera images the light from at least one face of the work piece on a detector of the camera by means of a lens. A stage is used for moving the work piece and for imaging the at least one face of the semiconductor device completely with the camera. The computer program product is disposed on a non-transitory, computer readable medium for defect detection in work pieces. A computer is used to execute the various process steps and to control the various means of the apparatus.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: February 6, 2024
    Assignee: KLA Corporation
    Inventors: Tom Marivoet, Carl Truyens, Christophe Wouters