Patents Assigned to KLA-Tencor Corporation
  • Publication number: 20200333262
    Abstract: Disclosed is apparatus for inspecting a sample. The apparatus includes illumination optics for simultaneously directing a plurality of incident beams at a plurality of azimuth angles towards a sample and collection optics for directing a plurality of field portions of output light from two or more of the plurality of angles towards two or more corresponding sensors. The two or more sensors are arranged for receiving the field portions corresponding to two or more angles and generating two or more corresponding images.
    Type: Application
    Filed: July 2, 2020
    Publication date: October 22, 2020
    Applicant: KLA-Tencor Corporation
    Inventors: Guoheng Zhao, Sheng Liu, Ben-Ming Benjamin Tsai
  • Patent number: 10801968
    Abstract: Based on job dumps for defects of interest and nuisance events for multiple optical modes, detection algorithms, and attributes, the best combination of the aforementioned is identified. Combinations of each of the modes with each of the detection algorithms can be compared for all the defects of interest detected at an offset of zero. Capture rate versus nuisance rate can be determined for one of the attributes in each of the combinations.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: October 13, 2020
    Assignee: KLA-Tencor Corporation
    Inventor: Bjorn Brauer
  • Patent number: 10801975
    Abstract: Methods and systems for performing simultaneous optical scattering and small angle x-ray scattering (SAXS) measurements over a desired inspection area of a specimen are presented. SAXS measurements combined with optical scatterometry measurements enables a high throughput metrology tool with increased measurement capabilities. The high energy nature of x-ray radiation penetrates optically opaque thin films, buried structures, high aspect ratio structures, and devices including many thin film layers. SAXS and optical scatterometry measurements of a particular location of a planar specimen are performed at a number of different out of plane orientations. This increases measurement sensitivity, reduces correlations among parameters, and improves measurement accuracy. In addition, specimen parameter values are resolved with greater accuracy by fitting data sets derived from both SAXS and optical scatterometry measurements based on models that share at least one geometric parameter.
    Type: Grant
    Filed: May 5, 2013
    Date of Patent: October 13, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Michael S. Bakeman, Andrei V. Shchegrov
  • Patent number: 10804069
    Abstract: A photocathode can include a body fabricated of a wide bandgap semiconductor material, a metal layer, and an alkali halide photocathode emitter. The body may have a thickness of less than 100 nm and the alkali halide photocathode may have a thickness less than 10 nm. The photocathode can be illuminated with a dual wavelength scheme.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: October 13, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Katerina Ioakeimidi, Gildardo R. Delgado, Michael E. Romero, Frances Hill, Rudy F. Garcia
  • Patent number: 10804167
    Abstract: Methods and systems for performing co-located measurements of semiconductor structures with two or more measurement subsystems are presented herein. To achieve a sufficiently small measurement box size, the metrology system monitors and corrects the alignment of the measurement spot of each metrology subsystem with a metrology target to achieve maximum co-location of the measurement spots of each metrology subsystem with the metrology target. In another aspect, measurements are performed simultaneously by two or more metrology subsystems at high throughput at the same wafer location. Furthermore, the metrology system effectively decouples simultaneously acquired measurement signals associated with each measurement subsystem. This maximizes signal information associated with simultaneous measurements of the same metrology by two or more metrology subsystems.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: October 13, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: David Y. Wang, Esen Salcin, Michael Friedmann, Derrick Shaughnessy, Andrei V. Shchegrov, Jonathan M. Madsen, Alexander Kuznetsov
  • Patent number: 10801953
    Abstract: Methods and systems for performing semiconductor measurements based on hyperspectral imaging are presented herein. A hyperspectral imaging system images a wafer over a large field of view with high pixel density over a broad range of wavelengths. Image signals collected from a measurement area are detected at a number of pixels. The detected image signals from each pixel are spectrally analyzed separately. In some embodiments, the illumination and collection optics of a hyperspectral imaging system include fiber optical elements to direct illumination light from the illumination source to the measurement area on the surface of the specimen under measurement and fiber optical elements to image the measurement area. In another aspect, a fiber optics collector includes an image pixel mapper that couples a two dimensional array of collection fiber optical elements into a one dimensional array of pixels at the spectrometer and the hyperspectral detector.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: October 13, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: David Y. Wang, Alexander Buettner, Stilian Ivanov Pandev, Emanuel Saerchen, Andrei V. Shchegrov, Barry Blasenheim
  • Patent number: 10796969
    Abstract: A system and method are provided for fabricating semiconductor wafer features with controlled dimensions. In use, a top surface of a semiconductor wafer is identified. A first portion of the top surface of the semiconductor wafer is then vertically etched to form a step down from a second portion of the top surface of the semiconductor wafer, the step comprised of a horizontal face and a vertical sidewall. Additionally, a film is uniformly deposited across the horizontal face and the vertical sidewall of the step. Further, the second portion of the top surface of the semiconductor wafer is vertically etched to expose, as a feature of the semiconductor wafer, the film deposited across the vertical sidewall of the step.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: October 6, 2020
    Assignee: KLA-TENCOR CORPORATION
    Inventor: Farhat A. Quli
  • Patent number: 10796065
    Abstract: Defects can be identified using a hybrid design layout that includes a printable layer and a non-printed layer. The hybrid design layout can be generated by incorporating at least a portion of the non-printable layer layout with the printable layer layout. Defects can be identified using optical or scanning electron beam images.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: October 6, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Allen Park, Ankit Jain
  • Patent number: 10788759
    Abstract: Prediction based systems and methods for optimizing wafer chucking and lithography control are disclosed. Distortions predicted to occur when a wafer is chucked by a chucking device are calculated and are utilized to control chucking parameters of the chucking device. Chucking parameters may include chucking pressures and chucking sequences. In addition, predicted distortions may also be utilized to facilitate application of anticipatory corrections. Controlling chucking parameters and/or applying anticipatory corrections help reducing or minimizing overlay errors.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: September 29, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Bin-Ming Benjamin Tsai, Oreste Donzella, Pradeep Vukkadala, Jaydeep Sinha
  • Patent number: 10790114
    Abstract: Objective lens alignment of a scanning electron microscope review tool with fewer image acquisitions can be obtained using the disclosed techniques and systems. Two different X-Y voltage pairs for the scanning electron microscope can be determined based on images. A second image based on the first X-Y voltage pair can be used to determine a second X-Y voltage pair. The X-Y voltage pairs can be applied at the Q4 lens or other optical components of the scanning electron microscope.
    Type: Grant
    Filed: August 9, 2017
    Date of Patent: September 29, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Ichiro Honjo, Christopher Sears, Hedong Yang, Thanh Ha, Jianwei Wang, Huina Xu
  • Patent number: 10789703
    Abstract: Autoencoder-based, semi-supervised approaches are used for anomaly detection. Defects on semiconductor wafers can be discovered using these approaches. The model can include a variational autoencoder, such as a one that includes ladder networks. Defect-free or clean images can be used to train the model that is later used to discover defects or other anomalies.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: September 29, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Shaoyu Lu, Li He, Sankar Venkataraman
  • Publication number: 20200292468
    Abstract: Disclosed are apparatus and methods for inspecting a sample. Locations corresponding to candidate defect events on a sample are provided from an inspector operable to acquire optical images from which such candidate defect events are detected at their corresponding locations across the sample. High-resolution images are acquired from a high-resolution inspector of the candidate defect events at their corresponding locations on the sample. Each of a set of modelled optical images, which have been modeled from a set of the acquired high-resolution images, is correlated with corresponding ones of a set of the acquired optical images, to identify surface noise events, as shown in the set of high-resolution images, as sources for the corresponding candidate events in the set of acquired optical images. Otherwise, a subsurface event is identified as a likely source for a corresponding candidate defect event.
    Type: Application
    Filed: May 28, 2020
    Publication date: September 17, 2020
    Applicant: KLA-Tencor Corporation
    Inventors: Qiang Zhang, Grace H. Chen
  • Patent number: 10775323
    Abstract: Methods and systems for characterizing dimensions and material properties of semiconductor devices by full beam x-ray scatterometry are described herein. A full beam x-ray scatterometry measurement involves illuminating a sample with an X-ray beam and detecting the intensities of the resulting zero diffraction order and higher diffraction orders simultaneously for one or more angles of incidence relative to the sample. The simultaneous measurement of the direct beam and the scattered orders enables high throughput measurements with improved accuracy. The full beam x-ray scatterometry system includes one or more photon counting detectors with high dynamic range and thick, highly absorptive crystal substrates that absorb the direct beam with minimal parasitic backscattering.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: September 15, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Antonio Arion Gellineau, Thaddeus Gerard Dziura, John J. Hench, Andrei Veldman, Sergey Zalubovsky
  • Patent number: 10778925
    Abstract: A multiple-column-per-channel image CCD sensor utilizes a multiple-column-per-channel readout circuit including connected transfer gates that alternately transfer pixel data (charges) from a group of adjacent pixel columns to a shared output circuit at high speed with low noise. Charges transferred along the adjacent pixel columns at a line clock rate are alternately passed by the transfer gates to a summing gate that is operated at multiple times the line clock rate to pass the image charges to the shared output circuit. A symmetrical fork-shaped diffusion is utilized in one embodiment to merge the image charges from the group of related pixel columns. A method of driving the multiple-column-per-channel CCD sensor with line clock synchronization is also described. A method of inspecting a sample using the multiple-column-per-channel CCD sensor is also described.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: September 15, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, Jingjing Zhang, Sharon Zamek, John Fielden, Devis Contarato, David L. Brown
  • Patent number: 10777393
    Abstract: A sensing device for measuring a plasma process parameter in a plasma chamber for processing workpieces may include a substrate with one or more sensor embedded in the substrate. The substrate can have a surface made of substantially the same material as workpieces that are plasma processed in the plasma chamber. Each sensor can include a collector portion made of substantially the same material as the substrate surface. The collector portion includes a surface that is level with the surface of the substrate. The collector portion is the top surface of the substrate. Sensor electronics are embedded into the substrate and coupled to the collector portion. When the substrate surface is exposed to a plasma one or more signals resulting from the plasma can be measured with the sensor(s).
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 15, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Earl Jensen, Mei Sun
  • Patent number: 10777377
    Abstract: A multi-column assembly for a scanning electron microscopy (SEM) system is disclosed. The multi-column assembly includes a plurality of electron-optical columns arranged in an array defined by one or more spacings. Each electron-optical column includes one or more electron-optical elements. The plurality of electron-optical columns is configured to characterize one or more field areas on a surface of a sample secured on a stage. The number of electron-optical columns in the plurality of electron-optical columns equals an integer number of inspection areas in a field area of the one or more field areas. The one or more spacings of the plurality of electron-optical columns correspond to one or more dimensions of the inspection areas.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: September 15, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Robert Haynes, Frank Chilese, Moshe E. Preil
  • Patent number: 10769769
    Abstract: A dual mode inspector includes an optical inspector configured to detect a defect located at a first location on a sample, a microscope configured to capture an image of the defect at the first location on the sample, and a platform that is configured to support the sample. The sample is not removed from the platform between the detecting of the defect located at the first location on the sample and the capturing of the image of the defect at the first location on the sample. The dual mode optical inspector also includes a controller that causes the optical inspector to detect the defect located at the first location on the sample and causes the microscope to capture the image of the defect at the first location on the sample. The dual mode inspector also performs scanning lens distortion correction to improve the capturing of defect images.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: September 8, 2020
    Assignee: KLA-TENCOR CORPORATION
    Inventors: Steven W. Meeks, Rusmin Kudinar, Ronny Soetarman, Hung P. Nguyen, James Jianguo Xu
  • Patent number: 10770258
    Abstract: An electron-optical system for inspecting or reviewing an edge portion of a sample includes an electron beam source configured to generate one or more electron beams, a sample stage configured to secure the sample and an electron-optical column including a set of electron-optical elements configured to direct at least a portion of the one or more electron beams onto an edge portion of the sample. The system also includes a sample position reference device disposed about the sample and a guard ring device disposed between the edge of the sample and the sample position reference device to compensate for one or more fringe fields. One or more characteristics of the guard ring device are adjustable. The system also includes a detector assembly configured to detect electrons emanating from the surface of the sample.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: September 8, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Xinrong Jiang, Christopher Sears, Harsh Sinha, David Trease, David Kaz, Wei Ye
  • Patent number: 10769320
    Abstract: Methods and systems for performing measurements based on a measurement model integrating a metrology-based target model with a process-based target model. Systems employing integrated measurement models may be used to measure structural and material characteristics of one or more targets and may also be used to measure process parameter values. A process-based target model may be integrated with a metrology-based target model in a number of different ways. In some examples, constraints on ranges of values of metrology model parameters are determined based on the process-based target model. In some other examples, the integrated measurement model includes the metrology-based target model constrained by the process-based target model. In some other examples, one or more metrology model parameters are expressed in terms of other metrology model parameters based on the process model. In some other examples, process parameters are substituted into the metrology model.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: September 8, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Alexander Kuznetsov, Andrei V. Shchegrov, Stilian Ivanov Pandev
  • Patent number: 10768533
    Abstract: A system for generating and implementing programmed defects includes a lithography tool configured to form a multi-pattern structure including a first array pattern and a second array pattern on a sample. The first array pattern or the second array pattern contains a programmed defect to differentiate the first array pattern from the second array pattern. The system includes a metrology tool configured to acquire one or more images of the first array pattern and the second array pattern having a field-of-view containing the programmed defect. The system includes a controller including one or more processors. The one or more processors are configured to receive the images of the first array pattern and the second array pattern from the metrology, and determine a metrology parameter associated with the first array pattern or the second array pattern.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: September 8, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Hong Xiao, Nadav Gutman