Patents Assigned to KLA-Tencor Technologies Corporation
  • Patent number: 7576317
    Abstract: Calibration of measurements of features made with a system having a micromachining tool and an analytical tool is disclosed. The measurements can be calibrated with a standard having a calibrated feature with one or more known dimensions. The standard may have one or more layers including a single crystal layer. The calibrated feature may include one or more vertical features characterized by one or more known dimensions and formed through the single crystal layer. A trench is formed in a sample with the micromachining tool to reveal a sample feature. The analytical tool measures one or more dimensions of the sample feature corresponding to one or more known dimensions of the calibrated feature. The known dimensions of the calibrated feature are measured with the same analytical tool. The measured dimensions of the sample feature and the calibrated feature can then be compared to the known dimensions of the calibrated feature.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: August 18, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Marco Tortonese, Mehran Nasser-Ghodsi
  • Patent number: 7573046
    Abstract: One embodiment relates to a thermal field emission electron gun. The electron gun includes a high-vacuum chamber, a thermal field emission cathode including a filament and a tip, a suppressor electrode, an extraction electrode, and a high-voltage power source. The high-voltage power source is coupled to the filament and to the suppressor and extraction electrodes such that the suppressor electrode is at a negative voltage potential in relation to the filament and the extraction electrode is at a positive voltage potential in relation to the filament. A current-limiting resistor is electrically coupled in series with the suppressor electrode. Applicant has determined that such a current-limiting resistor substantially reduces undesirable discharges and improve the reliability and lifetime of the electron gun. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: August 11, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventor: Nikolai N. Chubun
  • Patent number: 7571422
    Abstract: The invention is a method for generating a design rule map having a spatially varying overlay error budget. Additionally, the spatially varying overlay error budget can be employed to determine if wafers are fabricated in compliance with specifications. In one approach a design data file that contains fabrication process information and reticle information is processed using design rules to obtain a design map with a spatially varying overlay error budget that defines a localized tolerance to overlay errors for different spatial locations on the design map. This spatially varying overlay error budget can be used to disposition wafers. For example, overlay information obtained from measured metrology targets on a fabricated wafer are compared with the spatially varying overlay error budget to determine if the wafer overlay satisfies the required specification.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: August 4, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Michael Adel, Ellis Chang
  • Patent number: 7569834
    Abstract: A charged particle optic apparatus for improvement in resolution of an electrostatic, multi-beam column is disclosed. The charged particle optic apparatus includes an electrostatic lens array having a first plurality of apertures and a first magnetic pole piece disposed proximate the electrostatic lens array. The first magnetic pole piece includes a second plurality of apertures. The charged particle optic apparatus also includes a second magnetic pole piece disposed proximate the electrostatic lens array such that the electrostatic lens array is between the first magnetic pole piece and the second magnetic pole piece. The second magnetic pole piece includes a third plurality of apertures. The first, second and third pluralities of apertures are aligned with each other. The charged particle optic apparatus may be implemented in a charged particle beam system.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: August 4, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventor: Neil Richardson
  • Publication number: 20090190141
    Abstract: To measure the critical dimensions and other parameters of a one- or two-dimensional diffracting structure of a film, the calculation may be simplified by first performing a measurement of the thickness of the film, employing a film model that does not vary the critical dimension or parameters related to other characteristics of the structure. The thickness of the film may be estimated using the film model sufficiently accurately so that such estimate may be employed to simplify the structure model for deriving the critical dimension and other parameters related to the two-dimensional diffracting structure.
    Type: Application
    Filed: April 6, 2009
    Publication date: July 30, 2009
    Applicant: KLA-Tencor Technologies Corporation
    Inventors: Noah Bareket, Daniel C. Wack, Guoheng Zhao
  • Patent number: 7566873
    Abstract: One embodiment relates to an apparatus for inspecting a substrate using charged particles. The apparatus includes an illumination subsystem, an objective subsystem, a projection subsystem, and a beam separator interconnecting those subsystems. The apparatus further includes a detection system which includes a scintillating screen, a detector array, and an optical coupling apparatus positioned therebetween. The optical coupling apparatus includes both refractive and reflective elements. Other embodiments and features are also disclosed.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: July 28, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: David Walker, Salam Harb, Vassil Spasov, David Stites, Izzy Lewis, Marian Mankos
  • Patent number: 7566882
    Abstract: One embodiment pertains to a method of electron beam lithography. An illumination electron beam is formed, and a dynamic pattern generating device is used to generate an electron-reflective pattern of pixels and to reflect the illumination electron beam from said pattern so as to form a patterned electron beam. The patterned electron beam is projected onto a platter configured to hold and rotate a plurality of target substrates. Said generated pattern of pixels is shifted in correspondence with the rotation of the platter so that the patterned electron beam writes a swath path of pixels over the target substrates. Other features, aspects and embodiments are also disclosed.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: July 28, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventor: Harald F. Hess
  • Patent number: 7561282
    Abstract: Disclosed are semiconductor targets for measuring with a metrology tool having at least two incident beam modules and techniques for measuring the same. In one embodiment, the target includes an overlay target and a critical dimension (CD) target in the form of periodic features, and the overlay and CD targets are spaced apart by a distance that substantially matches a bore distance between two of the incident beam modules of the metrology tool. In another embodiment, the target includes two overlay targets in the form of periodic features and that are spaced apart by a distance that substantially matches a bore distance between two of the incident beam modules of the metrology tool. In another embodiment, the target includes two CD targets in the form of periodic features and that are spaced apart by a distance that substantially matches a bore distance between two of the incident beam modules of the metrology tool.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: July 14, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventor: Amir Widmann
  • Patent number: 7560939
    Abstract: One embodiment relates to an electron beam apparatus. The apparatus includes a mechanism for moving a substrate relative to the electron beam column at a controlled speed. A probe beam gun is configured to generate a probe beam through the column, and a pre-charging beam gun configured to generate a pre-charging beam through the column. Control circuitry configured to pre-scan a scan line with the pre-charging beam at least once and to subsequently sense scan the scan line with the probe beam at least once. The control circuitry is further configured so that there is a prescribed delay time between said pre-scanning and said sense scanning of the scan line. In another embodiment, a single electron beam and a deflection system configured to deflect the electron beam into pre-scans and sense scans. Other embodiments and features are also disclosed.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: July 14, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Indranil De, Kurt H. Weiner, Kenichi Kanai
  • Patent number: 7560691
    Abstract: One embodiment relates to a high-resolution Auger electron spectrometer in a scanning electron beam apparatus. An electron source generates a primary electron beam, and an immersion objective lens is configured to focus the primary electron beam onto a surface of a target substrate. A Wien filter is configured within the immersion objective lens and to deflect and disperse secondary electrons from the surface. A position sensitive detector is configured to receive the secondary electrons so as to detect an Auger electron spectrum. A first electron-optical lens may be positioned after the Wien filter so as to transfer a minimal-dispersion plane to an aperture plane. A second electron-optical lens may be positioned after the aperture so as to transfer a virtual focused-spectrum plane to a detector plane. Other embodiments, aspects and features are also disclosed.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: July 14, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventor: Alexander J. Gubbens
  • Patent number: 7557921
    Abstract: Disclosed are apparatus and methods for monitoring a characteristic associated with a product feature on a semiconductor product. A proxy target formed from at least one substructure that corresponds to a product feature is provided. The substructure is not individually resolvable by an optical tool. A characteristic of the proxy target is determined based on optically monitoring the proxy target using the optical tool. Based on the determined characteristic of the proxy target, it is then determined whether the corresponding product feature has a characteristic that is within a predetermined specification or whether a process parameter used to fabricate such product feature is within a predetermined specification. In a specific embodiment, the characteristic of the corresponding product feature includes a shape parameter and a position parameter.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: July 7, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Michael E. Adel, Moshe Preil, Kevin Monahan, Christopher F. Bevis, Ben Tsai, Mark Ghinovker
  • Publication number: 20090161096
    Abstract: A compact and versatile multi-spot inspection imaging system employs an objective for focusing an array of radiation beams to a surface and a second reflective or refractive objective having a large numerical aperture for collecting scattered radiation from the array of illuminated spots. The scattered radiation from each illuminated spot is focused to a corresponding optical fiber channel so that information about a scattering may be conveyed to a corresponding detector in a remote detector array for processing. For patterned surface inspection, a cross-shaped filter is rotated along with the surface to reduce the effects of diffraction by Manhattan geometry. A spatial filter in the shape of an annular aperture may also be employed to reduce scattering from patterns such as arrays on the surface. In another embodiment, different portions of the same objective may be used for focusing the illumination beams onto the surface and for collecting the scattered radiation from the illuminated spots simultaneously.
    Type: Application
    Filed: January 29, 2009
    Publication date: June 25, 2009
    Applicant: KLA- Tencor Technologies Corporation
    Inventors: Mehdi Vaez-Iravani, Lawrence Roberts Miller
  • Patent number: 7541115
    Abstract: Photolithographic masks and nano-imprint lithography masks with calcium fluoride substrates are disclosed. A photolithographic mask has a calcium fluoride substrate having a surface, a patterned layer disposed on the surface, and a polymer layer forming a pellicle that covers the patterned layer. A mask for nano-imprint lithography has a calcium fluoride substrate with a surface and a nano-imprint lithography pattern formed on the surface. Such masks can be used in a method for reducing the effects of hydration during lithography. In the method a layer of photoresist is formed on a substrate. A mask having a substrate made of calcium fluoride with a patterned surface is disposed proximate the layer of photoresist. The photoresist is exposed to radiation that passes through the mask. The radiation is characterized by a vacuum wavelength between about 190 nm and about 450 nm. Calcium fluoride masks can also be used to reduce the effects of hydration nano-imprint lithography.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: June 2, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: William Volk, Laurence Wagner
  • Patent number: 7541201
    Abstract: Disclosed are overlay targets having flexible symmetry characteristics and metrology techniques for measuring the overlay error between two or more successive layers of such targets. In one embodiment, a target includes structures for measuring overlay error (or a shift) in both the x and y direction, wherein the x structures have a different center of symmetry (COS) than the y structures. In another embodiment, one of the x and y structures is invariant with a 180° rotation and the other one of the x and y structures has a mirror symmetry. In one aspect, the x and y structures together are variant with a 180° rotation. In yet another example, a target for measuring overlay in the x and/or y direction includes structures on a first layer having a 180 symmetry and structures on a second layer having mirror symmetry.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: June 2, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventor: Mark Ghinovker
  • Publication number: 20090135416
    Abstract: A gallery of seed profiles is constructed and the initial parameter values associated with the profiles are selected using manufacturing process knowledge of semiconductor devices. Manufacturing process knowledge may also be used to select the best seed profile and the best set of initial parameter values as the starting point of an optimization process whereby data associated with parameter values of the profile predicted by a model is compared to measured data in order to arrive at values of the parameters. Film layers over or under the periodic structure may also be taken into account. Different radiation parameters such as the reflectivities Rs, Rp and ellipsometric parameters may be used in measuring the diffracting structures and the associated films. Some of the radiation parameters may be more sensitive to a change in the parameter value of the profile or of the films then other radiation parameters.
    Type: Application
    Filed: October 8, 2007
    Publication date: May 28, 2009
    Applicant: KLA-Tencor Technologies Corporation
    Inventors: Andrei V. Shchegrov, Anatoly Fabrikant, Mehrdad Nikoonahad, Ady Levy, Daniel C. Wack, Noah Bareket, Walter Mieher, Ted Dziura
  • Patent number: 7538868
    Abstract: Calibration of pattern recognition in bright field imaging systems is disclosed. A target pattern on a substrate on the stage is brought into focus of a bright field system. The image is scanned in a first direction while measuring an edge scattering pattern from a feature of the target pattern. The edge scattering pattern is characterized by first and second peaks. A position of the bright field system's illuminator or beam shaping and relay optics is adjusted perpendicular to an optical path until the first and second peaks are approximately equal in height.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: May 26, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Wei-Ning Shen, Xinkang Tian, Byeong Su Hwang, Tuan Van Tran
  • Patent number: 7538333
    Abstract: Systems and methods for determining a property of a specimen are provided. The specimen may be a product wafer. The method may include biasing a focused spot on the specimen. The method may also include measuring a parameter of a measurement spot on the specimen. The measurement spot may overlap the focused spot. In addition, the method may include determining the property of the specimen from the measured parameter. Systems and methods for varying the performance of a corona source are also provided. The method may include altering a property of the environment within the corona source. The property may include, but is not limited to, temperature, pressure, humidity, and/or partial pressure of a gas within the corona source.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: May 26, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Amin Samsavar, John M. Schmidt, Rainer Schierle, Gregory S. Horner, Thomas G. Miller, Zhiwei Xu, Xiaofeng Hu, Jianou Shi, Sergio Edelstein
  • Patent number: 7535563
    Abstract: Systems configured to inspect a specimen are provided. One system includes an illumination subsystem configured to illuminate a two-dimensional field of view on the specimen. The system also includes a collection subsystem configured to collect light scattered from the specimen. In addition, the system includes an array of micro-mirrors configured to reflect a two-dimensional pattern of light diffracted from periodic structures on the specimen out of the optical path of the system without reflecting light across an entire dimension of the array out of the optical path. The system further includes a detection subsystem configured to generate output responsive to light reflected by the array into the optical path. The output can be used to detect defects on the specimen. In one embodiment, the system includes an optical element configured to increase the uniformity of the wavefront of the light reflected by the array into the optical path.
    Type: Grant
    Filed: August 15, 2006
    Date of Patent: May 19, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Grace Hsiu-Ling Chen, Tao-Yi Fu, Jamie Sullivan, Shing Lee, Greg Kirk
  • Patent number: 7528349
    Abstract: A temperature stabilization system, method, composition of matter and substrate processing system are disclosed. A heat absorbing material is disposed in thermal contact with a substrate. The heat absorbing material is characterized by a solid-liquid phase transition temperature that is in a desired temperature range for material processing the substrate. When the substrate is subjected to material processing that results in heat transfer into or out of the substrate the solid-liquid phase transition of the heat absorbing material stabilizes the temperature of the substrate.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: May 5, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: Yehiel Gotkis, Arik Donde, Vincenzo Lordi
  • Patent number: 7528944
    Abstract: Methods and systems for detecting pinholes in a film formed on a wafer or for monitoring a thermal process tool are provided. One method for detecting pinholes in a film formed on a wafer includes generating output responsive to light from the wafer using an inspection system. The output includes first output corresponding to defects on the wafer and second output that does not correspond to the defects. This method also includes detecting the pinholes in the film formed on the wafer using the second output. One method for monitoring a thermal process tool includes generating output responsive to light from a wafer using an inspection system. The output includes the first and second output described above. The wafer was processed by the thermal process tool prior to generating the output. The method also includes monitoring the thermal process tool using the second output.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: May 5, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventors: David Chen, Andrew Steinbach, Daniel Kavaldjiev, Alexander Belyaev, Juergen Reich