Abstract: Disclosed are exemplary embodiments of board level shields including thermal interface materials. Also disclosed are methods of applying thermal interface materials to board level shields.
Abstract: According to various aspects, exemplary embodiments are disclosed of frames for shielding assemblies. Exemplary embodiments are also disclosed of shielding assemblies including such frames. In exemplary embodiments, a frame for a board level shield (BLS) may include portions alignable with and solderable to solder ball pads along a printed circuit board. A cover may be releasably attachable to, detachable from, and reattachable to the frame.
Type:
Grant
Filed:
October 2, 2019
Date of Patent:
May 12, 2020
Assignee:
Laird Technologies, Inc.
Inventors:
James D. Pille, Gerald R. English, Timothy M. Wrona
Abstract: According to various aspects, exemplary embodiments are disclosed of frames for shielding assemblies. Exemplary embodiments are also disclosed of shielding assemblies including such frames. In exemplary embodiments, a frame for a board level shield (BLS) may include at least one finger or tab (broadly, a portion or contact) configured to fill, cover, or close off a gap or void defined by a cover's sidewalls to thereby inhibit or prevent EMI leakage through the gap or void.
Abstract: In exemplary embodiments, a circuit assembly may be provided on and/or supported by an electrically conductive structure, such as a board level shield, a midplate, a bracket, a precision metal part, etc. For example, a circuit assembly may be provided on and/or supported by an outer top surface of a board level shield. In an exemplary embodiment, an assembly generally includes an electrically conductive structure configured for a first functionality in the electronic device. An electrically nonconductive material is on at least part of the electrically conductive structure. First electrical component(s) are at least partly on the electrically nonconductive layer and configured to define at least a portion of a circuit assembly for electrical connection with one or more second electrical components of the electronic device. The electrically conductive structure may thus be configured for a second functionality in the electronic device.
Abstract: According to various aspects, exemplary embodiments are disclosed of laser weldable brackets for attachment of heat sinks to EMI shields, such as a board level shield, etc. In an exemplary embodiment, an assembly generally includes an electromagnetic interference (EMI) shield, a heat sink, and a bracket laser weldable to the EMI shield for attachment of the heat sink to the EMI shield. In another exemplary embodiment, a method of attaching a heat sink to an EMI generally includes laser welding a bracket to the EMI shield whereby the bracket retains the heat sink in place relative to the EMI shield.
Abstract: According to various aspects, exemplary embodiments are disclosed of frames for shielding assemblies. Exemplary embodiments are also disclosed of shielding assemblies including such frames. In exemplary embodiments, a frame for a board level shield (BLS) may include portions alignable with and solderable to solder ball pads along a printed circuit board. A cover may be releasably attachable to, detachable from, and reattachable to the frame.
Type:
Application
Filed:
October 2, 2019
Publication date:
April 9, 2020
Applicants:
Laird Technologies, Inc., Laird Technologies, Inc.
Inventors:
James D. PILLE, Gerald R. ENGLISH, Timothy M. WRONA
Abstract: According to various aspects, exemplary embodiments are disclosed of thermal interface materials, electronic devices, and methods for establishing thermal joints between heat spreaders or lids and heat sources. In exemplary embodiments, a method of establishing a thermal joint for conducting heat between a heat spreader and a heat source of an electronic device generally includes positioning a thermal interface material (TIM1) between the heat spreader and the heat source.
Abstract: Exemplary embodiments are disclosed of thermal interface materials with wear-resisting layers and/or suitable for use between sliding components. Also disclosed are devices including thermal interface materials and methods of using thermal interface materials.
Abstract: Exemplary embodiments are disclosed of thermal interface materials with reinforcement for abrasion resistance and/or suitable for use between sliding components.
Type:
Grant
Filed:
September 7, 2018
Date of Patent:
February 4, 2020
Assignee:
Laird Technologies, Inc.
Inventors:
Keith David Johnson, Douglas S. McBain, Eugene Anthony Pruss, Jason L. Strader
Abstract: According to various aspects, exemplary embodiments are disclosed that include thermally-conductive EMI absorbers. In an exemplary embodiment, a thermally-conductive EMI absorber includes one or more portions disposed between a board level shield and a heat dissipation/removal structure. The thermally-conductive EMI absorber may be operable for attenuating EMI that propagates within the portions of the thermally-conductive EMI absorber between the board level shield and a heat dissipation/removal structure.
Type:
Grant
Filed:
March 26, 2018
Date of Patent:
November 12, 2019
Assignee:
Laird Technologies, Inc.
Inventors:
Paul Francis Dixon, Mohammadali Khorrami
Abstract: A multilayer board level shield includes an electrically-conductive shielding layer disposed between inner and outer dielectric layers. The multilayer board level shield may have an overall thickness of about 25 microns or less. The multilayer board level shield may have sufficient flexibility to be reconfigurable generally over one or more components on a substrate to thereby provide board level shielding for the one or more components. One or more dielectric joints may be defined between the printed circuit board and the outer dielectric layer that attach the multilayer board level shield to the printed circuit board.
Type:
Grant
Filed:
March 5, 2018
Date of Patent:
November 12, 2019
Assignee:
Laird Technologies, Inc.
Inventors:
Jason L. Strader, Eugene Anthony Pruss, Gerald R. English
Abstract: A device for absorbing energy from an electronic component includes a low melting alloy layer including a first side and a second side opposing the first side, and coating layers substantially covering the first side and the second side of the low melting alloy layer. In some embodiments, the low melting alloy layer includes a polymer mixture and a plurality of low melting alloy particulates dispersed in the polymer mixture. Other example devices are also disclosed.
Abstract: According to various aspects, exemplary embodiments are disclosed of board level shields with virtual grounding capability. In an exemplary embodiment, a board level shield includes one or more resonators configured to be operable for virtually connecting the board level shield to a ground plane or a shielding surface. Also disclosed are exemplary embodiments of methods relating to making board level shields having virtual grounding capability. Additionally, exemplary embodiments are disclosed of methods relating to providing shielding for one or more components on a substrate by using a board level shield having virtual grounding capability. Further exemplary embodiments are disclosed of methods relating to making system in package (SiP) or system on chip (SoC) shielded modules and methods relating to providing shielding for one or more components of SiP or SoC module.
Type:
Grant
Filed:
June 8, 2018
Date of Patent:
October 22, 2019
Assignee:
Laird Technologies, Inc.
Inventors:
Mohammadali Khorrami, Paul Francis Dixon, George William Rhyne
Abstract: Disclosed are exemplary embodiments of thermal transfer/management and electromagnetic interference (EMI) shielding/mitigation solutions, systems, and/or assemblies for electronic devices. Also disclosed are methods of making or manufacturing (e.g., stamping, drawing, etc.) components of the thermal transfer/management and EMI shielding/mitigation solutions, systems, and/or assemblies.
Abstract: Exemplary embodiments are provided of combined heater and accumulator assemblies. In an exemplary embodiment, an assembly generally includes an enclosure including a first portion, a second portion, and a divider between the first and second portions. The assembly also includes an inlet through which coolant may enter an interior of the second portion, and an outlet through which the coolant may exit the interior of the second portion. The assembly further includes a heat source operable for supplying heat for heating the coolant within the interior of the second portion.
Type:
Grant
Filed:
May 18, 2016
Date of Patent:
October 1, 2019
Assignee:
Laird Technologies, Inc.
Inventors:
Dan Martin Gustav Karlstedt, Christoph Bauckhage, Paul Damian Crocco
Abstract: According to various aspects, exemplary embodiments are disclosed of thermal interface materials, electronic devices, and methods for establishing thermal joints between heat spreaders or lids and heat sources. In exemplary embodiments, a method of establishing a thermal joint for conducting heat between a heat spreader and a heat source of an electronic device generally includes positioning a thermal interface material (TIM1) between the heat spreader and the heat source.
Abstract: Disclosed are exemplary embodiments of systems and methods for controllably changing (e.g., weaken, strengthen, eliminate, add, customize, alter, etc.) surface tack of thermal interface materials. Also disclosed are exemplary embodiments of thermal interface material assemblies, which include coatings configured to change surface tack of the thermal interface materials.
Abstract: Exemplary embodiments are disclosed of multifunctional components for electronic devices. In an exemplary embodiment, a multifunctional component generally includes a base component, such as a smart phone case (e.g., a back cover, etc.), an inner plate (e.g., a screenplate, a mid-plate, etc.). A heat spreader may be disposed on the base component. Thermal interface material and electromagnetic interference shielding may be disposed on area(s) of the heat spreader. The area(s) may correspond in mirror image relation to component(s) of a circuit board with which the multifunctional component is configured to be joined. During operation of the electronic device, the multifunctional component may draw waste heat from one area and transfer/spread the waste heat to one or more other areas of the electronic device, which may increase a temperature of these one or more other areas. This, in turn, may make device temperature more uniform.