Patents Assigned to Lawrence Livermore National Security, LLC
  • Patent number: 11873740
    Abstract: The present disclosure relates to a system for storing and time shifting at least one of excess electrical power from an electrical power grid, excess electrical power from the power plant itself, or heat from a heat generating source, in the form of pressure and heat, for future use in assisting with a production of electricity. An oxy-combustion furnace is powered by a combustible fuel source, plus excess electricity, during a charge operation to heat a reservoir system containing a quantity of a thermal storage medium. During a discharge operation, a discharge subsystem has a heat exchanger which receives heated CO2 from the reservoir system and uses this to heat a quantity of high-pressure, supercritical CO2 (sCO2) to form very-high-temperature, high-pressure sCO2 at a first output thereof. The very-high-temperature, high-pressure sCO2 is used to drive a Brayton-cycle turbine, which generates electricity at a first output thereof for transmission to a power grid.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: January 16, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Thomas A. Buscheck, Ravindra Shrikrishna Upadhye
  • Patent number: 11864989
    Abstract: A system comprising first, second, and third shape memory polymers (SMPs); wherein (a) the first SMP is a biodegradable open cell foam that includes a first channel; (b) the second SMP includes a second channel and is included in the first channel; (c) the foam is in a first state and is configured to expand to a second state, radially outward from the second foam, in response to thermal stimulus; (d) the third SMP is between the first and second SMPs and includes a stent having a first strut that includes the third SMP and a second strut that includes the third SMP; and (e) each of the first, second, and third SMPs is coupled to a wire.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: January 9, 2024
    Assignees: Lawrence Livermore National Security, LLC, The Regents of the University of California
    Inventors: Thomas S. Wilson, Duncan J. Maitland, Ward Small, IV, Patrick R. Buckley, William J. Benett, Jonathan Hartman, David Saloner
  • Patent number: 11865636
    Abstract: The present disclosure relates to a system for laser processing of a ceramic electrolyte material. The system may include a controller, a laser responsive to the controller for generating a beam, and a beam forming subsystem. The beam forming subsystem controls a parameter of the beam generated by the laser. The beam forming subsystem further controls the beam to provide a laser fluence sufficient to produce densification of the ceramic electrolyte material.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: January 9, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jianchao Ye, John Roehling, Jae Hyuck Yoo
  • Patent number: 11866594
    Abstract: In accordance with one aspect of the presently disclosed inventive concepts, a product includes a porous three-dimensional (3D) printed polymer structure having elastomeric shape memory, where the structure includes a material comprising a plurality of gas-filled microballoons. The 3D printed polymer structure has hierarchical porosity.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: January 9, 2024
    Assignees: Lawrence Livermore National Security, LLC
    Inventors: Amanda Wu, Taylor Maxwell Bryson, Eric Duoss, Thomas R. Metz, Ward Small, Thomas S. Wilson, Stephanie Schulze, Emily Cheng
  • Patent number: 11867866
    Abstract: A system and method is disclosed for detecting fissionable materials. In one embodiment the system may incorporate a neutron pulse generator configured to generate multiple short pulses of neutrons, or a single pulse of sufficient intensity, in a vicinity of an object of interest. The source pulse of neutrons includes neutrons which each have a full width half maximum time duration of less than about 100 ns and a peak energy level no greater than about 20 MeV. A fast response detector is used which is able to detect single neutron events indicative of fission neutrons having been produced by the source pulse of neutrons interacting with fissionable material associated with the object of interest, and which arrive at the fast response detector within a predetermined time window immediately before arrival of the source neutron pulses.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: January 9, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Yuri Podpaly, James M. Hall, Alexander Peter Povilus, Andrea Schmidt, Dustin Yang
  • Patent number: 11867638
    Abstract: A system and method is disclosed for detecting anomalies in an additively manufactured part. An energy source generates a signal forming an optical beam for creating a melt pool in a layer of feedstock material being selectively fused to make a part in an additive manufacturing operation. A sensor is configured to receive a signal reflected from the melt pool. The reflected signal forms a thermal signal indicative of a temperature of the feedstock material at a known location on a layer of the feedstock material while the feedstock material is being fused at the known location. A controller receives and analyzes data relating to the received signal to determine if an anomaly exists at the known location.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: January 9, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Jean-Baptiste Forien, Nicholas P. Calta, Gabriel Mark Guss, Manyalibo Joseph Matthews
  • Patent number: 11868025
    Abstract: Apparatuses comprising cascaded or series configurations of Mach-Zehnder electrooptic modulators, where the nonlinearities of the cascaded and series configurations of Mach-Zehnder electrooptic modulators increase signal bandwidth and boost signal fidelity in electronic digital to analog converters. The Mach-Zehnder electrooptic modulators are combined with photodiode detectors that are used to convert signals from the optical domain to the electrical domain.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: January 9, 2024
    Assignee: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventors: Ryan D. Muir, Vincent J. Hernandez, Brandon W. Buckley, Daniel E. Mittelberger, John E. Heebner
  • Patent number: 11859266
    Abstract: A product includes a material having: nickel and at least one rare earth element. The at least one rare earth element is present in the material in a weight percentage in a range of about 2% to about 20% relative to a total weight of the material. A method includes forming a material comprising an alloy of nickel and at least one rare earth element. The at least one rare earth element is present in the material in a weight percentage in a range of about 2% to about 20% relative to a total weight of the material.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: January 2, 2024
    Assignees: Lawrence Livermore National Security, LLC, Eck Industries, Inc., Iowa State University Research Foundation, Inc., University of Tennessee Research Foundation, UT-Battelle, LLC
    Inventors: Scott K. McCall, Alexander Baker, Hunter B. Henderson, Tian Li, Aurelien Perron, Zachary Cole Sims, David Weiss, Ryan T. Ott, Orlando Rios, Max Neveau
  • Patent number: 11858202
    Abstract: The present disclosure relates to an additive manufacturing system for forming a part using a powder material. In one embodiment the system makes use of a primary heat generating subsystem to generate a fusing beam for heating and fusing at least one of select portions of a powder layer, or an entire area of a powder layer, deposited on a build plate. The system also incorporates a beam steering subsystem for steering the fusing beam over the powder layer. A supplemental heating subsystem is used to generate a wide area beam to heat a portion of the powder layer either prior to fusing, along with the fusing operation, or subsequent to fusing of the powder with the fusing beam. The wide area beam has an intensity which is insufficient to fuse the powder, and alters a microstructure of the powder layer as the powder layer is at least one of fused or as it cools, to thus relieve stress in the part.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: January 2, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: William Smith, Gabriel M. Guss, Manyalibo Joseph Matthews, Joseph T. McKeown, John Roehling
  • Patent number: 11862758
    Abstract: The present disclosure relates to a lighting component which may comprise a light emitting diode (LED) or laser diode (LD) for generating at least one of blue light or ultraviolet light. A fluoride phosphor matrix may be included, which may be consolidated into a phosphor ceramic structure including at least one of a transparent fluoride ceramic structure or a translucent fluoride ceramic structure, and positioned adjacent to the LED or LD. The phosphor ceramic structure generates at least one of red or orange light when irradiated by the light emitted from the LED or LD. The phosphor ceramic structure exhibits reduced thermal quenching relative to a fluoride particulate structure irradiated by the LED or LD.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: January 2, 2024
    Assignees: Lawrence Livermore National Security, LLC, Current Lighting Solutiosn, LLC
    Inventors: Nerine Cherepy, Ross Allen Osborne, Stephen A. Payne, Zachary Seeley, Alok Srivastava, William Winder Beers, William Erwin Cohen
  • Patent number: 11858858
    Abstract: An ink, and products formed from the ink, formulated at least in part from ceramic particles. The ink is formulated so that it can be used in additive manufacturing processes to form three-dimensional printed bodies. The three-dimensional printed bodies can have graded density and can be infiltrated by an infiltration material.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: January 2, 2024
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Swetha Chandrasekaran, James T. Cahill, Wyatt L. Du Frane, Joshua D. Kuntz, Richard L. Landingham, Ryan Lu, Marcus A. Worsley
  • Publication number: 20230415405
    Abstract: A product includes a three-dimensional structure having a plurality of sequentially-formed layers comprised of liquid crystal elastomers. The liquid crystal elastomers in a portion of a first of the layers are substantially aligned in a predefined first orientation and the liquid crystal elastomers in a portion of a second of the layers are substantially aligned in a predefined second orientation that is different than the first orientation. Each of the portions of the three-dimensional structure is characterized as exhibiting a shape change in response to a stimulus, wherein the shape change is reversible. The product includes a contiguous region of aligned liquid crystal elastomers in one of the portions having a maximum dimension of less than 60 microns.
    Type: Application
    Filed: August 24, 2023
    Publication date: December 28, 2023
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Bryan D. Moran, Elaine Lee, Caitlyn Christian Krikorian, Logan Bekker
  • Patent number: 11850790
    Abstract: The present disclosure relates to a volumetric additive manufacturing system for forming a structure from a volume of resin using microwave energy. The system makes use of an electronic controller and at least one beam forming algorithm accessible by the electronic controller for generating information relating to an amplitude and a time delay for forming a microwave signal, where the microwave signal will be used in irradiating a build volume, and where the build volume is formed by the volume of resin. A microwave signal generating subsystem is included which is responsive to the information generated by the beam forming algorithm, and which generates a microwave signal using the amplitude and the time delay determined by the beam forming algorithm. An antenna is used to receive the microwave signal and project the microwave signal as a microwave beam, in accordance with the amplitude and time delay, into the build volume to form the structure.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: December 26, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Saptarshi Mukherjee, Tammy Chang, Joseph W. Tringe
  • Patent number: 11845144
    Abstract: A nanofluid laser entrainment additive manufacturing apparatus, system and method including a substrate, a dilute nanofluid of inert gas suspended nanoparticles on the substrate, a focused energy beam that irradiates the nanoparticles to selectively melt the nanoparticles, and a raster system that raster scans the focused energy beam across the inert gas suspended nanoparticles to create predetermined shapes by additive manufacturing.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: December 19, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Manyalibo Joseph Matthews
  • Patent number: 11841220
    Abstract: The present disclosure relates to a system for detecting and analyzing droplets of feedstock material being ejected from an additive manufacturing device. The system makes use of a split ring resonator (SRR) probe including a ring element having a gap, with the gap being positioned adjacent a path of travel of the droplets of feedstock material. An excitation signal source is used for supplying an excitation signal to the SRR probe. An analyzer analyzes signals generated by the SRR probe in response to perturbations in an electric field generated by the SRR probe as the droplets of feedstock material pass the ring element. The signals are indicative of dimensions of the droplets of feedstock material.
    Type: Grant
    Filed: November 18, 2021
    Date of Patent: December 12, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Saptarshi Mukherjee, Tammy Chang
  • Patent number: 11840018
    Abstract: The present disclosure relates to a method for forming a three dimensional (3D) component from a photopolymer resin. The method may involve generating a first optical beam at a first wavelength, with the first optical beam causing polymerization of a photopolymerizable resist. A second optical beam is generated at a second wavelength, different from the first wavelength, which inhibits polymerization of the photopolymerizable resist. A device is used to receive the first and second optical beams and to generate therefrom corresponding separate first and second light patterns, respectively, where the first light pattern forms a first image on the photopolymerizable resist to cause polymerization of a first portion of the photopolymerizable resist, while the second light pattern forms a second image on the photopolymerizable resist and inhibits polymerization of a second portion of the photopolymerizable resist.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: December 12, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Bryan D. Moran
  • Patent number: 11835743
    Abstract: Optical structures, including thin film designs and components with topography, are provided that achieve significantly improved laser damage thresholds and/or ultra-low-loss. These advances may be achieved by utilizing a bulk window including a material having a band gap that is at least 5.0 eV and a thickness. The bulk window can be configured to increase the laser induced damage threshold of the underlying optical structure.
    Type: Grant
    Filed: February 10, 2021
    Date of Patent: December 5, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventor: Hoang T. Nguyen
  • Patent number: 11837389
    Abstract: In accordance with one aspect of the presently disclosed inventive concepts, a magnet includes a material having a chemical formula: YFe3(Ni1-xCox)2, where x is greater than 0 and x is less than 1.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: December 5, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Alexander Landa, Per Soderlind, Emily Moore, Aurelien Perron
  • Patent number: 11833488
    Abstract: In one embodiment, a product includes a nanoporous gold structure comprising a plurality of ligaments, and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: December 5, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Juergen Biener, Arne Wittstock, Monika M. Biener, Michael Bagge-Hansen, Marcus Baeumer, Andre Wichmann, Bjoern Neuman
  • Patent number: 11835387
    Abstract: A spectral beam combining system includes a spectral channel splicer comprising a plurality of reflectors and a spectral beam combiner comprising a diffraction optical element such as a diffraction grating. This spectral beam combining system may facilitate combining an increased number of spectral channels thereby producing higher optical power of the combining beam system.
    Type: Grant
    Filed: December 2, 2021
    Date of Patent: December 5, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Hoang T. Nguyen, Michael C. Rushford