Patents Assigned to Lloyd Berg
  • Patent number: 5232558
    Abstract: 4-Methyl-2-pentanone cannot be easily separated from formic acid by distillation because of the closeness of their boiling points. 4-Methyl-2-pentanone can be readily removed from formic acid by extractive distillation. Typical effective agents are dimethylsulfoxide (DMSO) and 2-undecanone; DMSO and octanoic acid; DMSO and hexyl acetate.
    Type: Grant
    Filed: October 8, 1992
    Date of Patent: August 3, 1993
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Marc W. Paffhausen
  • Patent number: 5228956
    Abstract: 3-Pentanone cannot be completely removed from 3-pentanone and formic acid mixtures by distillation because of the presence of the maximum azeotrope. 3-Pentanone can be readily removed from 3-pentanone-formic acid mixtures by extractive distillation in which the extractive agent is cyclopentanone, either alone or admixed with certain high boiling organic compounds. Examples of effective agents are cyclopentanone; cyclopentanone and 2-methoxyethyl ether; cyclopentanone, adiponitrile and octanoic acid.
    Type: Grant
    Filed: October 2, 1992
    Date of Patent: July 20, 1993
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Rudolph J. Szabados
  • Patent number: 5228957
    Abstract: The separation by conventional distillation or rectification of methyl t-butyl ether from close boiling hydrocarbons is difficult because of the closeness of their vapor pressures. Methyl t-butyl ether can be readily separated from these by extractive distillation. Examples of effective agents are: from 1-pentene, dimethylsulfoxide; from cyclopentane, sulfolane and from n-pentane - cyclopentane mixtures, diethyl malonate.
    Type: Grant
    Filed: January 6, 1993
    Date of Patent: July 20, 1993
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5227029
    Abstract: Formic acid cannot be easily removed from formic acid-acetic acid mixtures by distillation because of the closeness of their boiling points. Formic acid can be readily removed from mixtures containing it and acetic acid by extractive distillation. Typical effective agents are 2-nitrotoluene, 1-nitropropane and m-nitrobenzoic acid.
    Type: Grant
    Filed: January 29, 1993
    Date of Patent: July 13, 1993
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Randi W. Wytcherley
  • Patent number: 5225050
    Abstract: Hexane cannot be removed from hexane - vinyl acetate mixtures by distillation because of the minimum boiling azeotrope. Hexane can be readily removed from vinyl acetate by extractive distillation. Typical effective agents are phenol, 1-nitropropane and benzyl alcohol.
    Type: Grant
    Filed: December 15, 1992
    Date of Patent: July 6, 1993
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Randi W. Wytcherley
  • Patent number: 5207876
    Abstract: Tetrachloroethylene cannot be completely separated from methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, 1-pentanol, 2-pentanol, 3-methyl-1-butanol or t-amyl alcohol by conventional distillation or rectification because of the minimum boiling azeotropes. Tetrachloroethylene can be readily separated from these alcohols by extractive distillation. A typical effective agent is dimethylsulfoxide.
    Type: Grant
    Filed: January 17, 1992
    Date of Patent: May 4, 1993
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Zuyin Yang
  • Patent number: 5198077
    Abstract: Glycerine cannot be easily separated from mannitol, lactose or lactitol by atmospheric or reduced pressure distillation because of their high boiling points. Glycerine can be readily separated from mannitol, lactose or lactitol by azeotropic distillation. Typical effective agents are biphenyl, benzyl benzoate and dimethyl phthalate.
    Type: Grant
    Filed: November 19, 1991
    Date of Patent: March 30, 1993
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5196094
    Abstract: 1,1,1-Trichloroethane cannot be completely separated from methanol, ethanol, n-propanol, isopropanol, 2-butanol or t-butanol by conventional distillation or rectification because of the minimum boiling azeotropes. 1,1,1-Trichloroethane can be readily separated from these alcohols by extractive distillation. A typical effective agent is dimethylsulfoxide.
    Type: Grant
    Filed: November 8, 1991
    Date of Patent: March 23, 1993
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Zuyin Yang
  • Patent number: 5194123
    Abstract: 4-Methyl-2-pentanone cannot be easily separated from acetic acid by distillation because of the closeness of their boiling points. 4-Methyl-2-pentanone can be readily removed from acetic acid by extractive distillation. Typical effective agents are dimethlsulfoxide (DMSO); DMSO and adipic acid; DMSO, adipic acid and adiponitrile.
    Type: Grant
    Filed: July 6, 1992
    Date of Patent: March 16, 1993
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Marc W. Paffhausen
  • Patent number: 5190622
    Abstract: Glycerine cannot be easily separated from sorbitol by atmospheric or reduced pressure distillation because of their high boiling points. Glycerine can be readily separated from sorbitol by azeotropic distillation. Typical effective agents are biphenyl, benzyl benzoate and dimethyl phthalate.
    Type: Grant
    Filed: November 14, 1991
    Date of Patent: March 2, 1993
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5190619
    Abstract: 3-Methyl-2-butanone cannot be separated from formic acid by distillation because of the presence of the maximum boiling azeotrope. 3-Methyl-2-butanone can be readily removed from formic acid by extractive distillation using dimethylsulfoxide (DMSO). Typical effective agents are: DMSO and heptanoic acid; DMSO, octanoic acid and butyl benzoate.
    Type: Grant
    Filed: March 30, 1992
    Date of Patent: March 2, 1993
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, George Bentu
  • Patent number: 5173156
    Abstract: Formic acid cannot be completely removed from formic acid--water mixtures by distillation because of the presence of the maximum azeotrope. Formic acid can be readily removed from mixtures containing it and water by using extractive distillation in which the extractive distillation agent is cyclohexanone, isophorone or a mixture of these with certain organic compounds. Typical examples of effective agents are cyclohexanone; isophorone; cyclohexanone and neodecanoic acid; isophorone and diisobutyl ketone.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: December 22, 1992
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Kraig M. Wendt, Rudolph J. Szabados
  • Patent number: 5167774
    Abstract: Acetic acid cannot be easily removed from acetic acid - water mixtures by distillaton because of the closeness of their boiling points and the deviation from ideal solution behavior. Acetic acid can be readily removed from the mixtures containing it and water by using extractive distillation. Typical effective agents are sulfolane and adiponitrile.
    Type: Grant
    Filed: February 6, 1992
    Date of Patent: December 1, 1992
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5160412
    Abstract: Acetic acid is difficult to separate from water by conventional distillation or rectification because of the close proximity of their boiling points. Acetic acid can be readily separated from water by using azeotropic distillation. Typical examples of effective agents are ethyl n-valerate and 4-methyl-2-pentanone.
    Type: Grant
    Filed: March 10, 1992
    Date of Patent: November 3, 1992
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5160585
    Abstract: Tetracholorethylene cannot be completely separated from n-butanol, isobutanol or 2-butanol by conventional distillation or rectification because of minimum boiling azeotropes. Tetrachloroethylene can be readily separated from n-butanol, isobutanol or 2-butanol by extractive distillatiion. Typical effective agents are: for n-butanol, dipropylene glycol methyl ether; for isobutanol, dimethylsulfoxide and isobutyl butyrate; for 2-butanol, ethylene glycol methyl ether and isobornyl acetate.
    Type: Grant
    Filed: July 23, 1991
    Date of Patent: November 3, 1992
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5154800
    Abstract: Acrylic acid cannot be completely separated from water by conventional distillation or rectification because of the minimum boiling azeotrope. Acrylic acid can be readily separated from water by extractive distillation. Effective agents are dimethylsulfoxide, sulfolane, dimethylformamide or dimethylacetamide.
    Type: Grant
    Filed: January 31, 1992
    Date of Patent: October 13, 1992
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5152876
    Abstract: Methylene chloride cannot be completely separated from methanol or ethanol by conventional distillation or rectification because of the mimimum boiling azeotrope. Methyelne chloride can be readily separated from methanol or ethanol by azeotropic or extractive distillation. Typical effective agents are: for methanol by azeotropic distillation, isopropanol or t-butanol; by extractive distillation, 1-nitropropane or n-butanol; for ethanol by extractive distillation, isobutanol or n-propyl acetate.
    Type: Grant
    Filed: March 27, 1991
    Date of Patent: October 6, 1992
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Zuyin Yang
  • Patent number: 5151160
    Abstract: 2-Methoxyethanol cannot be completely separated from water by conventional distillation or rectification because of the minimum boiling azeotrope. 2-Methoxyethanol can be readily separated from water by extractive distillation. Effective agents are dimethylsulfoxide, sulfolane, dimethylformamide or 1,4-butanediol.
    Type: Grant
    Filed: April 6, 1992
    Date of Patent: September 29, 1992
    Assignee: Lloyd Berg
    Inventor: Lloyd Berg
  • Patent number: 5147512
    Abstract: The higher boiling ketone isomers are difficult to separate one from another by conventional distillation or rectification because of the close proximity of their boiling points. Ketone isomers can be readily separated from each other by extractive distillation. Typical examples of effective agents are: for 3-pentanone from 2-pentanone, dipropylene glycol; 3-hexanone from 2-hexanone, butoxypropanol; 3-heptanone from 2-heptanone, 50% ethylene glycol--50% butoxypropanol; 3-octanone from 2-octanone, ethylene glycol diacetate.
    Type: Grant
    Filed: June 28, 1991
    Date of Patent: September 15, 1992
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Thomas A. Edison
  • Patent number: 5131985
    Abstract: Chloroform cannot be completely separated from methanol, ethanol or isopropanol by conventional distillation or rectification because of the minimum boiling azeotrope between chloroform and the alcohols. Chloroform can be readily separated from methanol, ethanol or isopropanol by extractive distillation. Typical effective agents are: for methanol, isopropanol or 4-methyl-2-pentanone; for ethanol, n-butanol or isobutyl acetate; for isopropanol, butyl acetate or ethylene glycol ethyl ether.
    Type: Grant
    Filed: June 3, 1991
    Date of Patent: July 21, 1992
    Assignee: Lloyd Berg
    Inventors: Lloyd Berg, Zuyin Yang