Patents Assigned to Masimo Laboratories, Inc.
  • Patent number: 7899518
    Abstract: Instruments and methods are described for performing non-invasive measurements of analyte levels and for monitoring, analyzing and regulating tissue status, such as tissue glucose levels.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: March 1, 2011
    Assignee: Masimo Laboratories, Inc.
    Inventors: Pierre Trepagnier, Jenny Freeman, James Mansfield, Derek Brand, Michael J. Hopmeier, Nikiforos Kollias
  • Publication number: 20110028811
    Abstract: A sensor cover according to embodiments of the disclosure is capable of being used with a non-invasive physiological sensor, such as a pulse oximetry sensor. Certain embodiments of the sensor cover reduce or eliminate false readings from the sensor when the sensor is not in use, for example, by blocking a light detecting component of a pulse oximeter sensor when the pulse oximeter sensor is active but not in use. Further, embodiments of the sensor cover can prevent damage to the sensor. Additionally, embodiments of the sensor cover prevent contamination of the sensor.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 3, 2011
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Abraham Mazda Kiani, Massi Joe E. Kiani
  • Publication number: 20110004079
    Abstract: An embodiment of the present disclosure provides a noninvasive optical sensor or probe including disposable and reusable components. The assembly of the disposable and reusable components is straightforward, along with the disassembly thereof. During application to a measurement site, the assembled sensor is advantageously secured together while the componentry is advantageously properly positioned.
    Type: Application
    Filed: July 1, 2010
    Publication date: January 6, 2011
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Ammar Al-Ali, Yassir Abdul-Hafiz, Eric Yang
  • Patent number: 7801581
    Abstract: A physiological monitor utilizes rotation measurements to estimate mean photon pathlengths through tissue. These pathlength estimates, along with corresponding optical spectroscopy measurements allow the noninvasive monitoring of blood constituent concentrations. The technique is particularly applicable to noninvasive blood glucose measurements. The physiological monitor has a polarized light source for illuminating tissue and a magnetic field generator which creates a magnetic field within the tissue during illumination. The magnetic field imparts a rotation in the plane of polarization of the incident light beam as it propagates through the tissue and emerges as a transmitted light beam. A polarimeter is used to measure the rotation of the transmitted light. A signal processor then computes an estimate of the mean pathlength from the polarimeter output. The polarized light source has a multiple wavelength optical emitter and, in conjunction with the polarimeter detector, also functions as a spectrometer.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: September 21, 2010
    Assignee: Masimo Laboratories, Inc.
    Inventor: Mohamed K. Diab
  • Publication number: 20100228108
    Abstract: A physiological measurement system has a sensor, a processor, a communications link and information elements. The sensor is configured to transmit light having a plurality of wavelengths into a tissue site and to generate a sensor signal responsive to the transmitted light after tissue attenuation. The attenuated light can be used by the system to determine a plurality of physiological measurements. The processor is configured to operate on the sensor signal so as to derive at least one physiological parameter after which of the plurality of physiological measurements the system is configured to or capable of measuring.
    Type: Application
    Filed: May 18, 2010
    Publication date: September 9, 2010
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Ammar Al-Ali, Joe E. Kiani, Walter M. Weber
  • Patent number: 7791155
    Abstract: An improved photodiode detector shielding apparatus and method are provided which shield a photodiode detector from electromagnetic interference and ambient light, without affecting the wavelengths of light that reach the photodiode. The improved photodiode detector shield has two layers. A bottom layer is substantially made from an electrically conducting material and is fixed over a photodiode in order to shield it from EMI and ambient light. A top layer is substantially made from a lustrous, shiny, reflective material that reflects an equal amount of light across a band of wavelengths. Both layers have areas with optically transmissive openings, which are aligned to allow for the unobstructed passage of light of a band of wavelengths to the photodiode. Light within a band of wavelengths is evenly reflected off the top of the first surface and also reaches the photodiode.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: September 7, 2010
    Assignee: Masimo Laboratories, Inc.
    Inventor: Mohamed K. Diab
  • Patent number: 7764982
    Abstract: A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: July 27, 2010
    Assignee: Masimo Laboratories, Inc.
    Inventors: David Dalke, Ammar Al-Ali, Mohamed Diab, Marcelo Lamego, Robert Smith
  • Patent number: 7761127
    Abstract: A physiological sensor has emitters configured to transmit optical radiation having multiple wavelengths in response to corresponding drive currents. A thermal mass is disposed proximate the emitters so as to stabilize a bulk temperature for the emitters. A temperature sensor is thermally coupled to the thermal mass. The temperature sensor provides a temperature sensor output responsive to the bulk temperature so that the wavelengths are determinable as a function of the drive currents and the bulk temperature.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: July 20, 2010
    Assignee: Masimo Laboratories, Inc.
    Inventors: Ammar Al-Ali, Mohamed Diab, Marcelo Lamego, James P. Coffin, Yassir Abdul-Hafiz
  • Patent number: 7729733
    Abstract: A physiological measurement system has a sensor, a processor, a communications link and information elements. The sensor is configured to transmit light having a plurality of wavelengths into a tissue site and to generate a sensor signal responsive to the transmitted light after tissue attenuation. The processor is configured to operate on the sensor signal so as to derive at least one physiological parameter. The communications link is adapted to provide communications between the sensor and the processor. The information elements are distributed across at least one of the sensor, the processor and the communications link and provide operational information corresponding to at least one of the sensor, the processor and the communications link.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: June 1, 2010
    Assignee: Masimo Laboratories, Inc.
    Inventors: Ammar Al-Ali, Walter M. Weber, Joe E. Kiani
  • Publication number: 20100049020
    Abstract: A physiological sensor is adapted to removably attach an emitter assembly and a detector assembly to a fingertip. The emitter assembly is adapted to transmit optical radiation having multiple wavelengths into fingertip tissue. The detector assembly is adapted to receive the optical radiation after attenuation by the fingertip tissue. The sensor has a first shell and a second shell hinged to the first shell. A spring is disposed between the shells and urges the shells together. An emitter pad is fixedly attached to the first shell and configured to retain the emitter assembly. A detector pad is fixedly attached to the second shell and configured to retain the detector assembly. A detector aperture is defined within the detector pad and adapted to pass optical radiation to the detector assembly. A contour is defined along the detector pad and generally shaped to conform to a fingertip positioned over the detector aperture.
    Type: Application
    Filed: April 13, 2009
    Publication date: February 25, 2010
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: David Dalke, Ammar Al-Ali, Mohamed Diab, Marcelo Lamego, Robert Smith
  • Publication number: 20100030039
    Abstract: The present disclosure relates to an interface for a noninvasive glucose sensor that comprises a front-end adapted to receive an input signals from optical detectors and provide corresponding digital signals. In one embodiment, the front-end comprises switched capacitor circuits that are capable of handling multiple streams signals from the optical detectors. In another embodiment, the front-end comprises transimpedance amplifiers that are capable of handling multiple streams of input signals. In this embodiment, the transimpedance amplifier may be configured based on its own characteristics, such as its impedance, the impedance of the photodiodes to which it is coupled, and the number of photodiodes to which it is coupled.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 4, 2010
    Applicant: MASIMO Laboratories, Inc.
    Inventors: Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20100030040
    Abstract: The present disclosure relates to noninvasive methods, devices, and systems for measuring various blood constituents or analytes, such as glucose. In an embodiment, a light source comprises LEDs and super-luminescent LEDs. The light source emits light at least wavelengths of about 1610 nm, about 1640 nm, and about 1665 nm. In an embodiment, the detector comprises a plurality of photodetectors arranged in a special geometry comprising one of a substantially linear substantially equal spaced geometry, a substantially linear substantially non-equal spaced geometry, and a substantially grid geometry.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 4, 2010
    Applicant: MASIMO Laboratories, Inc.
    Inventors: Jeroen Poeze, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20100030041
    Abstract: The present disclosure relates to an emitter that is suitable for a noninvasive blood constituent sensor. The emitter is configured as a point optical source that comprises a plurality of LEDs that emit a sequence of pulses of optical radiation across a spectrum of wavelengths. In some embodiments, the plurality of sets of optical sources may each comprise at least one top-emitting LED and at least one super luminescent LED. In some embodiments, the emitter comprises optical sources that transmit optical radiation in the infrared or near-infrared wavelengths suitable for detecting glucose. In order to achieve the desired SNR for detecting analytes like glucose, the emitter may be driven using a progression from low power to higher power. In addition, the emitter may have its duty cycle modified to achieve a desired SNR.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 4, 2010
    Applicant: MASIMO Laboratories, Inc.
    Inventors: Johannes Bruinsma, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20100026995
    Abstract: The present disclosure relates to a sensor having a set of photodetectors that are arranged at various locations to enable the measurement of blood glucose. The photodetectors are arranged across multiple locations. For example, the detector may comprise multiple photodetector arrays that are arranged to have a sufficient difference in mean path length to allow for noise cancellation and noise reduction. Walls may be used in the detector to separate individual photodetectors and prevent mixing of detected optical radiation between the different locations on the measurement site. A window may also be employed to facilitate the passing of optical radiation at various wavelengths for measuring glucose in the tissue.
    Type: Application
    Filed: August 3, 2009
    Publication date: February 4, 2010
    Applicant: MASIMO Laboratories, Inc.
    Inventors: Sean Merritt, Marcelo Lamego, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Massi Joe E. Kiani
  • Publication number: 20100022859
    Abstract: A physiological sensor is adapted to removably attach an emitter assembly and a detector assembly to a fingertip. The emitter assembly is adapted to transmit optical radiation having multiple wavelengths into fingertip tissue. The detector assembly is adapted to receive the optical radiation after attenuation by the fingertip tissue. The sensor has a first shell and a second shell hinged to the first shell. A spring is disposed between the shells and urges the shells together.
    Type: Application
    Filed: September 28, 2009
    Publication date: January 28, 2010
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Ammar Al-Ali, Chris Schultz
  • Publication number: 20100010326
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 14, 2010
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Cristiano Dalvi, Marcelo Lamego, Sean Merritt, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Patent number: 7647083
    Abstract: A physiological sensor has intensity compensation introduced along an optical path from emission to detection so as to compensate for unequal tissue attenuation as a function of wavelength. The sensor has emitters configured to transmit optical radiation having multiple wavelengths into a tissue site. At least one detector is capable of receiving the optical radiation after tissue attenuation. An equalization is capable of compensating optical radiation intensity so as to account for differences in tissue attenuation across at least a portion of the multiple wavelengths.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: January 12, 2010
    Assignee: Masimo Laboratories, Inc.
    Inventors: Ammar Al-Ali, Mohamed Diab, Marcelo Lamego, James P. Coffin, Yassir Abdul-Hafiz
  • Publication number: 20100004518
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 7, 2010
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Hung Vo, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Publication number: 20100004519
    Abstract: A noninvasive physiological sensor for measuring one or more physiological parameters of a medical patient can include a bump interposed between a light source and a photodetector. The bump can be placed in contact with body tissue of a patient and thereby reduce a thickness of the body tissue. As a result, an optical pathlength between the light source and the photodetector can be reduced. In addition, the sensor can include a heat sink that can direct heat away from the light source. Moreover, the sensor can include shielding in the optical path between the light source and the photodetector. The shielding can reduce noise received by the photodetector.
    Type: Application
    Filed: July 2, 2009
    Publication date: January 7, 2010
    Applicant: MASIMO LABORATORIES, INC.
    Inventors: Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen, Massi Joe E. Kiani
  • Patent number: D621516
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: August 10, 2010
    Assignee: Masimo Laboratories, Inc.
    Inventors: Massi Joe E. Kiani, Marcelo Lamego, Sean Merritt, Cristiano Dalvi, Hung Vo, Johannes Bruinsma, Jeroen Poeze, Ferdyan Lesmana, Greg Olsen