Patents Assigned to Matrix Semiconductor
-
Publication number: 20030057435Abstract: There is provided a semiconductor device, such as a TFT, with a vertical drain offset region. The device contains a substrate having an upper first surface, a semiconductor channel region of a first conductivity type over the first surface, a gate electrode and a gate insulating layer between the gate electrode and the channel region. The device also contains a heavily doped semiconductor source region of a second conductivity type, a heavily doped semiconductor drain region of a second conductivity type. An intrinsic or lightly doped semiconductor drain offset region is located between the drain region and the channel region, such that the drain region is offset from the channel region at least partially in a direction perpendicular to the first surface.Type: ApplicationFiled: September 25, 2001Publication date: March 27, 2003Applicant: Matrix Semiconductor, Inc.Inventor: Andrew J. Walker
-
Patent number: 6534403Abstract: The present invention is a contact/via comprising and its method of fabrication. The contact/via of the present invention includes a conductive film. An opening having a top and bottom is formed on the conductive film. The opening has a first sidewall and a second sidewall wherein the first sidewall is opposite the second sidewall. The first sidewall has a stair step configuration such that the first sidewall is closer to the second sidewall at the bottom of the opening than at the top of the opening. A conductive film is then formed on the first sidewall in the opening and on the bottom of the opening on the conductive film.Type: GrantFiled: August 24, 2001Date of Patent: March 18, 2003Assignee: Matrix SemiconductorInventor: James M. Cleeves
-
Publication number: 20030046020Abstract: The preferred embodiments described herein provide a memory device and method for temperature-based control over write and/or read operations. In one preferred embodiment, the temperature of a memory array is monitored, and a write operation to the memory array is prevented in response to the monitored temperature reaching a threshold temperature. In another preferred embodiment, the temperature of a memory array is monitored, and a read operation from the memory array is prevented in response to the monitored temperature reaching a threshold temperature. Other preferred embodiments are provided, and each of the preferred embodiments can be used alone or in combination with one another.Type: ApplicationFiled: August 31, 2001Publication date: March 6, 2003Applicant: MATRIX SEMICONDUCTOR, INC.Inventor: Roy E. Scheuerlein
-
Publication number: 20030043643Abstract: The preferred embodiments described herein provide a memory device and method for selectable sub-array activation. In one preferred embodiment, a memory array is provided comprising a plurality of groups of sub-arrays and circuitry operative to simultaneously write data into and/or read data from a selected number of groups of sub-arrays. By selecting the number of groups of sub-arrays into which data is written and/or from which data is read, the write and/or read data rate is varied. Such varying can be used to prevent thermal run-away of the memory array. Other preferred embodiments are provided, and each of the preferred embodiments can be used alone or in combination with one another.Type: ApplicationFiled: August 31, 2001Publication date: March 6, 2003Applicant: MATRIX SEMICONDUCTOR, INC.Inventors: Roy E. Scheuerlein, Bendik Kleveland
-
Patent number: 6525953Abstract: A three-dimensional, field-programmable, non-volatile memory includes multiple layers of first and second crossing conductors. Pillars are self-aligned at the intersection of adjacent first and second crossing conductors, and each pillar includes at least an anti-fuse layer. The pillars form memory cells with the adjacent conductors, and each memory cell includes first and second diode components separated by the anti-fuse layer. The diode components form a diode only after the anti-fuse layer is disrupted.Type: GrantFiled: August 13, 2001Date of Patent: February 25, 2003Assignee: Matrix Semiconductor, Inc.Inventor: Mark G. Johnson
-
Patent number: 6525949Abstract: A charge pump circuit includes, in a preferred embodiment, a plurality of serially-connected pump stages, each of which is driven by one or more associated clock signals for the stage. The amplitude of the clock signals associated with a respective one of the pump stages differ in amplitude from that of the clock signals associated with at least one other pump stage. As a result, the additional voltage achieved by each successive pump stage may be progressively larger for each successive pump stage. An exemplary charge pump circuit provides clock signals which increase in amplitude with each successive pump stage, and provides with each successive pump stage an output voltage having a magnitude that is a multiplicative factor of the magnitude of the input voltage for the stage. Consequently, the output voltage achieved by the exemplary charge pump circuit is an exponential function of the number of pump stages within the charge pump circuit.Type: GrantFiled: December 22, 2000Date of Patent: February 25, 2003Assignee: Matrix Semiconductor, Inc.Inventors: Mark G. Johnson, Joseph G. Nolan, III, Matthew P. Crowley
-
Patent number: 6522594Abstract: A memory array includes a sensing circuit for sensing bit line current while keeping the voltage of the selected bit line substantially unchanged. The word lines and bit lines are biased so that essentially no bias voltage is impressed across half-selected memory cells, which substantially eliminates leakage current through half-selected memory cells. The bit line current which is sensed arises largely from only the current through the selected memory cell. A noise detection line in the memory array reduces the effect of coupling from unselected word lines to the selected bit line. In a preferred embodiment, a three-dimensional memory array having a plurality of rail-stacks forming bit lines on more than one layer, includes at least one noise detection line associated with each layer of bit lines. A sensing circuit is connected to a selected bit line and to its associated noise detection line.Type: GrantFiled: June 29, 2001Date of Patent: February 18, 2003Assignee: Matrix Semiconductor, Inc.Inventor: Roy E. Scheuerlein
-
Publication number: 20030026158Abstract: A memory cell for a two- or a three-dimensional memory array includes first and second conductors and set of layers situated between the conductors. This set of layers includes a dielectric rupture anti-fuse layer having a thickness less than 35 Å and a leakage current density (in the unruptured state) greater than 1 mA/cm2 at 2 V. This low thickness and high current leakage density provide a memory cell with an asymmetric dielectric layer breakdown voltage characteristic. The antifuse layer is formed of an antifuse material characterized by a thickness Tminlife at which the antifuse material is ruptured by a minimum number of write pulses having a polarity that reverse biases diode components included in the memory cell. The average thickness T of the antifuse layer is less than the thickness Tminlife.Type: ApplicationFiled: December 20, 2001Publication date: February 6, 2003Applicant: Matrix Semiconductor, Inc.Inventors: N. Johan Knall, James M. Cleeves, Igor G. Kouznetsov, Michael A. Vyvoda
-
Patent number: 6515904Abstract: The preferred embodiments described herein provide a method and system for increasing programming bandwidth in a non-volatile memory device. In one preferred embodiment, a memory device is provided with a plurality of bits to be stored in a respective plurality of memory cells along a wordline. Some of the bits represent a programmed state, and others represent an un-programmed state. The duration of the programming pulse applied to the wordline is determined by the number of bits that represent the programmed state. In another preferred embodiment, the plurality of bits to be stored in the memory device comprises a first set of bits representing a modification to the stored data and a second set of bits representing an un-programmed state. Other preferred embodiments are provided, and each of the preferred embodiments can be used alone or in combination with one another.Type: GrantFiled: June 29, 2001Date of Patent: February 4, 2003Assignee: Matrix Semiconductor, Inc.Inventors: Christopher S. Moore, Bendik Kleveland, Roger W. March, James M. Cleeves, Roy E. Scheuerlein
-
Patent number: 6515888Abstract: A low-cost memory cell array includes multiple, vertically-stacked layers of memory cells. In one form, each memory cell is characterized by a small cross-sectional area and a read current less than 6.3 microamperes. The resulting memory array has a slow access time and is well-suited for digital media storage, where access time requirements are low and the dramatic cost reductions associated with the disclosed memory arrays are particularly attractive. In another form, each memory cell includes an antifuse layer and diode components, wherein at least one diode component is heavily doped (to a dopant concentration greater than 1019/cm3), and wherein the read current is large (up to 500 mA).Type: GrantFiled: August 13, 2001Date of Patent: February 4, 2003Assignee: Matrix Semiconductor, Inc.Inventors: Mark G. Johnson, Thomas H. Lee, Vivek Subramanian, P. Michael Farmwald, N. Johan Knall
-
Patent number: 6515537Abstract: An integrated circuit current source includes an oscillator, a capacitor, a capacitor charging circuit and a capacitor discharging circuit, all formed on an integrated circuit substrate. The capacitor, capacitor charging circuit, and capacitor discharging circuit form a switched capacitor circuit having a resistance that varies inversely with the frequency of oscillation of the oscillator. This switched capacitor circuit is included in a bias signal generator that generates a bias signal at a level that varies in accordance with frequency of the oscillating signal. This bias signal is used to control frequency of the oscillator to provide a stable frequency of oscillation and a stable output current.Type: GrantFiled: March 16, 2001Date of Patent: February 4, 2003Assignee: Matrix Semiconductor, Inc.Inventor: Bendik Kleveland
-
Patent number: 6515923Abstract: In a preferred integrated circuit embodiment, a write-once memory array includes at least one test bit line which provides a respective test memory cell at the far end of each respective word line relative to its word line driver, and further includes at least one test word line which provides a respective test memory cell at the far end of each respective bit line relative to its bit line driver. An intra-layer short between word lines may be detected, such as during manufacturing testing, by biasing adjacent word lines to different voltages and detecting whether any leakage current flowing from one to another exceeds that normally accounted for by the memory cells and other known circuits. Intra-layer bit line shorts and inter-layer word line and bit line shorts may also be similarly detected. An “open” in a word line or bit line may be detected by trying to program the test memory cell at the far end of each such word line or bit line.Type: GrantFiled: November 15, 2001Date of Patent: February 4, 2003Assignee: Matrix Semiconductor, Inc.Inventor: James M. Cleeves
-
Publication number: 20030011033Abstract: A high-voltage transistor and fabrication process in which the fabrication of the high-voltage transistor can be readily integrated into a conventional CMOS fabrication process. The high-voltage transistor of the invention includes a channel region formed beneath a portion of the gate electrode after the gate electrode has been formed on the surface of a semiconductor substrate. In a preferred embodiment, the channel region is formed by the angled ion implantation of dopant atoms using an edge of the gate electrode as a doping mask. The high-voltage transistor of the invention further includes a drain region that is spaced apart from the channel region by a portion of a well region and by an isolation region residing in the semiconductor substrate. By utilizing the process of the invention to fabricate the high-voltage transistor, the transistor can be integrated into an existing CMOS device with minimal allocation of additional substrate surface area.Type: ApplicationFiled: March 30, 2001Publication date: January 16, 2003Applicant: Matrix Semiconductor, Inc.Inventor: Christopher J. Petti
-
Patent number: 6504753Abstract: A passive element memory array preferably biases selected X-lines to an externally received VPP voltage and selected Y-lines to ground. Unselected Y-lines are preferably biased to VPP minus a first offset voltage, and unselected X-lines biased to a second offset voltage (relative to ground). The first and second offset voltages preferably are identical and have a value of about 0.5 to 2 volts. The VPP voltage depends upon the memory cell technology used, and preferably falls within the range of 5 to 20 volts. The area otherwise required for an on-chip VPP generator and saves the power that would be consumed by such a generator. In addition, the operating temperature of the integrated circuit during the programming operation decreases, which further decreases power dissipation. When discharging the memory array, the capacitance between layers is preferably discharged first, then the layers are discharged to ground.Type: GrantFiled: June 29, 2001Date of Patent: January 7, 2003Assignee: Matrix Semiconductor, Inc.Inventors: Roy E. Scheuerlein, Matthew P. Crowley
-
Patent number: 6501139Abstract: A high-voltage transistor and fabrication process in which the fabrication of the high-voltage transistor can be readily integrated into a conventional CMOS fabrication process. The high-voltage transistor of the invention includes a channel region formed beneath a portion of the gate electrode after the gate electrode has been formed on the surface of a semiconductor substrate. In a preferred embodiment, the channel region is formed by the angled ion implantation of dopant atoms using an edge of the gate electrode as a doping mask. The high-voltage transistor of the invention further includes a drain region that is spaced apart from the channel region by a portion of a well region and by an isolation region residing in the semiconductor substrate. By utilizing the process of the invention to fabricate the high-voltage transistor, the transistor can be integrated into an existing CMOS device with minimal allocation of additional substrate surface area.Type: GrantFiled: March 30, 2001Date of Patent: December 31, 2002Assignee: Matrix Semiconductor, Inc.Inventor: Christopher J. Petti
-
Patent number: 6490218Abstract: A digital memory array includes memory cells having respective anti-fuse layers. Write signals that vary in at least one of current, voltage, and pulse length are applied to selected ones of the memory cells to disrupt the respective anti-fuse layers to differing extents, thereby programming the selected memory cells with resistances that vary in accordance with the degree of anti-fuse layer disruption. The state of a selected memory cell is read by applying a voltage across the cell and comparing the resulting read signal with two or more thresholds, thereby reading more than one bit of digital data from each memory cell.Type: GrantFiled: August 17, 2001Date of Patent: December 3, 2002Assignee: Matrix Semiconductor, Inc.Inventors: Michael A. Vyvoda, N. Johan Knall
-
Patent number: 6486066Abstract: The present invention is a level of an integrated circuit. The level of integrated circuit has a first area having a plurality of features having a first density and the level of the integrated circuit has a second area adjacent to the first area wherein the second area has a plurality of dummy features having a density substantially similar to the first density.Type: GrantFiled: February 2, 2001Date of Patent: November 26, 2002Assignee: Matrix Semiconductor, Inc.Inventors: James M. Cleeves, Michael A. Vyvoda
-
Patent number: 6486728Abstract: An integrated voltage source includes a charge pump having multiple charge pump stages connected in series. A first one of the these charge pump stages is connected to the high voltage output of the charge pump, and the remaining charge pump stages are coupled to this first charge pump stage in a manner such that substantially all the charge pumped by all of the additional charge pump stages is also pumped by the first charge pump stage. In one mode of operation, the first charge pump stage and at least one additional charge pump stage are enabled. In another mode of operation, the first charge pump stage and at least two additional charge pump stages are enabled. A control circuit determines the mode of operation and, therefore, the number of charge pump stages that are enabled.Type: GrantFiled: March 16, 2001Date of Patent: November 26, 2002Assignee: Matrix Semiconductor, Inc.Inventor: Bendik Kleveland
-
Patent number: 6486065Abstract: The present invention is a method of fabricating a semiconductor array. According to the present invention, a semiconductor layer having an upper surface is formed. A masking layer is then formed on the semiconductor layer. The masking layer is then patterned. The semiconductor layer is etched in alignment with the patterned masking layer to define memory array features.Type: GrantFiled: December 22, 2000Date of Patent: November 26, 2002Assignee: Matrix Semiconductor, Inc.Inventors: Michael A. Vyvoda, N. Johan Knall, James M. Cleeves
-
Patent number: 6483728Abstract: A charge pump circuit includes, in a preferred embodiment, a plurality of serially-connected pump stages, each of which is driven by one or more associated clock signals for the stage. The amplitude of the clock signals associated with a respective one of the pump stages differ in amplitude from that of the clock signals associated with at least one other pump stage. As a result, the additional voltage achieved by each successive pump stage may be progressively larger for each successive pump stage. An exemplary charge pump circuit provides clock signals which increase in amplitude with each successive pump stage, and provides with each successive pump stage an output voltage having a magnitude that is a multiplicative factor of the magnitude of the input voltage for the stage. Consequently, the output voltage achieved by the exemplary charge pump circuit is an exponential function of the number of pump stages within the charge pump circuit.Type: GrantFiled: November 15, 2001Date of Patent: November 19, 2002Assignee: Matrix Semiconductor, Inc.Inventors: Mark G. Johnson, Joseph G. Nolan, III, Matthew P. Crowley