Patents Assigned to MaxLinear, Inc.
  • Patent number: 10176850
    Abstract: A method and apparatus for memory power and/or area reduction. An array of memory cells may be scanned to detect faulty memory cells, if any, in the array. A supply voltage Vmem applied to the array of memory cells may be controlled based on a result of the scan, and based on a sensitivity coefficient of one, or more, of the array of memory cells. The sensitivity coefficient may indicate an impact that the one, or more, of the array of memory cells being faulty may have on the performance of a device that reads and writes data to the memory array. Additionally or alternatively, the physical dimensions of the memory cells may be determined based on the sensitivity coefficient(s) and/or based on a number of faulty memory cells that can be tolerated in the array of memory cells.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: January 8, 2019
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Vadim Smolyakov, Timothy Gallagher, Glenn Gulak
  • Patent number: 10162053
    Abstract: In accordance with an example implementation of this disclosure, a multifunction radar transceiver comprises a transmitter and a receiver. The transmitter is operable to modulate data onto a first radar burst, beamform the first radar burst, and transmit the first radar burst via a plurality of antenna elements. The receiver is operable to receive a reflection of the first radar burst, perform beamforming of the reflection of the first radar burst, demodulate the first radar burst to recover the data modulated on the first radar burst, and determine characteristics of an object off of which the first radar burst reflected based on characteristics of the reflection of the first radar burst.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: December 25, 2018
    Assignee: Maxlinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 10164674
    Abstract: Systems and methods are provided for receiver nonlinearity estimation and cancellation. During processing of received radio frequency (RF) signals, it may be determined when one or more other signals, different from the received RF signals, cause nonlinearity affecting processing of the RF signals, and one or more cancellation adjustments may be applied during processing of the RF signals, for mitigating effects of the nonlinearity. Determining the one or more cancellation adjustments may be based on narrowband (NB) estimation of the effects of the nonlinearity, and the one or more cancellation adjustments may be configured as wideband (WB) corrections. The NB estimation may be applied based on channelization of the received RF signals. The NB estimation may comprise generating reference nonlinearity information relating to the one or more other signals, and generating, based on the reference nonlinearity information, control data for configuring the one or more cancellation adjustments.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: December 25, 2018
    Assignee: MAXLINEAR, INC.
    Inventors: Wen-Chi Tu, Stephane Laurent-Michel
  • Patent number: 10164761
    Abstract: Methods and systems are provided for using error related feedback during signal processing. During handling of an input signal, each of a plurality of sub-carriers in the input signal is processed, and error-related information for each one of the plurality of sub-carriers is determined based on the processing. Aggregate error-related information is generated based on error-related information of each of one of the plurality of sub-carriers, and subsequent processing of at least one of the sub-carriers is adjusted based on the aggregate error-related information. The error-related information may comprise phase error-related information. Adjustments to subsequent processing of one or more of the sub-carriers may be determined based on processing-related information corresponding to different stages during processing of each of the plurality of sub-carriers.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: December 25, 2018
    Assignee: MAXLINEAR, INC
    Inventors: Curtis Ling, Timothy Gallagher
  • Patent number: 10158922
    Abstract: Aspects of a method and apparatus for band separation for multiband communication systems are provided. One or more circuits for use in a transceiver may comprise a triplexer and a leakage processing module. The triplexer may comprise a first port, a Multimedia Over Coaxial Alliance (MoCA) port, a television upstream port, and a television downstream port. The leakage processing module may comprise a television downstream input port, a cable television downstream output port, a MoCA port, and a cable television upstream port. The leakage processing module may be operable to (1) process a MoCA signal to generate a first compensation signal; (2) process a cable upstream signal to generate a second compensation signal; (3) process a filtered signal based at least in part on the first and second compensation signals; and (4) output the processed filtered signal via the cable television downstream output port of said leakage processing module.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: December 18, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Madhukar Reddy, Timothy Gallagher
  • Patent number: 10158368
    Abstract: A digital-to-analog converter (DAC) controller system may be configured for controlling switching in an associated digital-to-analog converter (DAC), based on a plurality of system inputs that include at least a first system input corresponding to an input applied to the DAC for controlling switching therein, and a second system input that includes a reference control signal. The DAC controller system may include a logic gate circuit that generates a gate output based on two gate inputs that include the first system input and an input set based on the second system input; and a plurality of timing circuits that generate timing outputs for controlling timing of switching in the DAC, which include at least one timing circuit that generates a timing output based on the gate output, with the timing output configured for application in conjunction with and for adjusting a timing output of another timing circuit.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: December 18, 2018
    Assignee: MAXLINEAR, INC.
    Inventors: Gaurav Chandra, Tao Zeng, Shantha Murthy Prem Swaroop, Jianyu Zhu
  • Patent number: 10148480
    Abstract: Methods and apparatus for processing multichannel signals in a multichannel receiver are described. In one implementation, a plurality of demodulators may provide a plurality of outputs to a processor, with the processor then simultaneously estimating noise characteristics based on the plurality of outputs and generating a common noise estimate based on the plurality of outputs. This common noise estimate may then be provided back to the demodulators and used to adjust the demodulation of signals in the plurality of demodulators to improve phase noise performance.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: December 4, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Timothy Gallagher
  • Patent number: 10148300
    Abstract: Methods and systems for a configurable low-noise amplifier with programmable band-selection filters may comprise a receiver with a low-noise amplifier (LNA) with first and second input terminals and differential output terminals; a low pass filter operably coupled to the LNA; a high pass filter operably coupled to the second input terminal of the LNA; and a signal source input coupled to the low pass filter and the high pass filter. The LNA may be operable to receive signals in a pass band of the high pass filter and a pass band of the low pass filter. The receiver may be operable to amplify input signals in the pass band of a first filter but not signals in the pass band of the second filter by operably coupling the second to ground.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: December 4, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Raja Pullela, Wenjian Chen, Vamsi Paidi
  • Patent number: 10148417
    Abstract: A method and system for duty-cycled high speed clock and data recovery with forward error correction are provided. The system operates on a first digital signal comprising a first plurality of samples and a second digital signal comprising a second plurality of samples. The second plurality of samples may be a subset of the first plurality of samples, for example, if the first and second pluralities of samples are generated by one analog-to-digital converter. A clock and data recovery module is operable to produce a timing indication according the second digital signal. The second plurality of samples is sampled intermittently. The discontinuity between bursts of samples in the second signal corresponds to a duty cycle. A forward error correction module is operable to produce a digital error-corrected signal according to the first digital signal and the timing indication.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: December 4, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Sheng Ye
  • Patent number: 10142001
    Abstract: Methods and systems for hybrid radio frequency digital beamforming may include, in an electronic device comprising an antenna array including antennas arranged along first and second directions, beamforming signals in an analog domain along the first direction of the antenna array and in a digital domain along the second direction of the antenna array. The antenna array may include subsets of antennas, where each subset has a system-on-chip (SOC) with analog and digital beamforming circuitry. Signals may be beamformed in the analog domain by amplifying signals received by the antenna array using a configurable gain and shifting the phase of at least one of the amplified signals. The phase-shifted signals may be summed and converted to a digital signal. A frequency-dependent coefficient may be applied to the digital signal. The antenna array may have a fewer number of antennas along the first direction as compared to along the second direction.
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: November 27, 2018
    Assignee: Maxlinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 10141944
    Abstract: Nonlinearity correction in a device that performs analog-to-digital conversion on received analog signals, may be calibrated by generating correction-parameters estimation which when applied to the total spectral content reduces distortion resulting from said nonlinearity in originally-unoccupied spectral regions. Digital signals generated based on sampling of the received analog signals may then be corrected, to remove nonlinearity related distortion, based on the estimated correction-parameters. The nonlinearity calibration may be performed during reception and handling of said analog signals. The correction-parameters may be generated based on signals located in particular spectral regions, such as the originally-unoccupied spectral regions. These signals may be injected within the device, into the particular spectral regions, and the signal may have known characteristics to enable estimating the required correction.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: November 27, 2018
    Assignee: MAXLINEAR, INC.
    Inventors: Mansour Rachid, Timothy Gallagher, Curtis Ling
  • Patent number: 10141653
    Abstract: A method and system comprises in a data center including a first server rack housing a first spatial crossbar, a second server rack housing a second spatial crossbar, performing by the first spatial crossbar: transmitting data to the second spatial crossbar via a first millimeter wave beam between the first spatial crossbar and the second spatial crossbar. The first millimeter wave beam may emanate from the first spatial crossbar at a first angle and be redirected toward the second spatial crossbar by a reflective surface in the data center. The first server rack may house a first server; and the data may be received from the first server via a wired or fiber link. The first server rack may house a top-of-rack switch, and the data may be received from the top-of-rack switch via a wired or fiber link.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: November 27, 2018
    Assignee: Maxlinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 10142256
    Abstract: Circuitry for use in a network controller comprises a processor and memory. The network controller is operable to control communications in a network comprising a plurality of devices connected via a shared coaxial cable. The circuitry is operable to maintain one or more data structures that hold per-sender-receiver-pair link parameters and per-sender-receiver-pair bandwidth grant status. The circuitry is operable to, in response to receipt of a reservation request on the shared coaxial cable, decide which one or more of a plurality of subbands and which one or more of a plurality timeslots to reserve for the transmission based, at least in part, on the per-sender-receiver-pair link parameters and the per-sender-receiver-pair bandwidth grant status in the one or more data structures. The circuitry is operable to generate a reservation grant message that indicates the decided one or more subbands and the decided one or more timeslots.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: November 27, 2018
    Assignee: MaxLinear, Inc.
    Inventors: Sridhar Ramesh, Curtis Ling, Timothy Gallagher
  • Patent number: 10142142
    Abstract: A system comprises a modulator circuit, a test signal generator circuit, and a control circuit. The modulator circuit is operable to generate a data-carrying signal based on a reference signal. The test signal generator circuit is operable to generate a test signal based on the reference signal. The control circuit is operable to determine current status of a microwave backhaul link. The control circuit is operable to configure a nominal frequency at which the test signal generator circuit generates the test signal based on the determined status of the microwave backhaul link. The control circuit is operable to determine an amount of whitespace to have on either side of the test signal based on the current status of the microwave backhaul link. The control circuit is operable to configure the modulator circuit such that the data-carrying signal has the determined amount of whitespace surrounding the nominal frequency of the test signal.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: November 27, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Stephane Laurent-Michel, Curtis Ling
  • Patent number: 10135682
    Abstract: A cable modem termination system (CMTS) may determine, for a plurality of cable modems served by the CMTS, a corresponding plurality of SNR-related metrics. The CMTS may assigning the modems among a plurality of service groups based on the SNR-related metrics. For any one of the modems, the CMTS may configure physical layer communication parameters to be used by the one of the modems based on a SNR-related metric of a service group to which the one of the modems is assigned. The physical layer communication parameters may include one or more of: transmit power, receive sensitivity, timeslot duration, modulation type, modulation order, forward error correction (FEC) type, and FEC code rate. The CMTS and the modems may communicate using orthogonal frequency division multiplexing (OFDM) over a plurality of subcarriers, and the physical layer communication parameters may be determined on a per-subcarrier basis.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: November 20, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Sridhar Ramesh, Timothy Gallagher
  • Patent number: 10135573
    Abstract: Methods and systems for improved cross polarization rejection and tolerating of coupling between satellite signals may comprise receiving radio frequency (RF) signals on a chip, where the RF signals comprising a desired signal and at least one crosstalk signal. The received RF signals may be down-converted to baseband frequencies, and the down-converted signals are converted to digital signals. Crosstalk may be determined by estimating complex coupling coefficients between the received RF signals utilizing a de-correlation algorithm across a frequency bandwidth comprising the desired and crosstalk signals. The down-converted signals may be low-pass filtered and summed with an output signal from a cancellation filter. The complex coupling coefficients may be determined utilizing the de-correlation algorithm on the summed signals, and may be used to configure the cancellation filter.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: November 20, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Rajasekhar Pullela, Timothy Gallagher, Glenn Chang
  • Patent number: 10135522
    Abstract: Aspects of methods and systems for transceiver array synchronization are provided. An array based communications system comprises a plurality of transceiver circuits and an array coordinator. Each transceiver circuit of the plurality of transceiver circuits comprises a plurality of wireless transmitters and a local oscillator generator. Each wireless transmitter of the plurality of wireless transmitters is able to modulate a local oscillator signal from the local oscillator generator based on a weighted sum of a plurality of digital datastreams. The array coordinator is able to adjust a phase of a first local oscillator signal based on a phase difference between the first local oscillator signal and a second local oscillator signal. The first local oscillator signal is generated by a first local oscillator generator of a first transceiver circuit. The second local oscillator signal is generated by a second local oscillator generator of a second transceiver circuit.
    Type: Grant
    Filed: November 2, 2017
    Date of Patent: November 20, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Timothy Gallagher, Curtis Ling
  • Patent number: 10126421
    Abstract: A radar transmitter comprises orthogonal frequency division multiplexing (OFDM) symbol generation circuitry, windowing circuitry, and control circuitry. The OFDM symbol generation circuitry is operable to modulate data onto a plurality of subcarriers to generate a plurality of OFDM symbols. The windowing circuitry is configurable to support a plurality of windowing functions. The control circuitry is operable to analyze returns from a previous transmission of the radar transmitter to determine characteristics of the environment into which the previous transmission was transmitted. The control circuitry is operable to select which one of the plurality of windowing functions the windowing circuitry is to apply to each of the plurality of OFDM symbols based on the characteristics of the environment. A first one of the windowing functions may correspond to a first radiation pattern and the second one of the windowing functions may correspond to a second radiation pattern.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: November 13, 2018
    Assignee: Maxlinear, Inc.
    Inventor: Curtis Ling
  • Patent number: 10116469
    Abstract: An electronic receiver may generate a differential detection sequence based on a received symbol sequence and based on a m-symbol delayed version of the received symbol sequence, where m is an integer greater than 1. The particular differential detection sequence may be a result of an element-by-element multiplication of the particular received symbol sequence and the conjugate of an m-symbol delayed version of the particular received symbol sequence. The receiver may calculate differential decision metrics based on the differential detection sequence and based on a set of differential symbol sequences generated from the set of possible transmitted symbol sequences. The receiver may generate a decision as to which of a set of possible transmitted symbol sequences resulted in the received symbol sequence, where the decision is based on the differential decision metrics and the set of possible transmitted symbols sequences.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 30, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Ioannis Spyropoulos, Anand Anandakumar
  • Patent number: 10116390
    Abstract: Aspects of a method and system for feedback during optical communications are provided. In one embodiment, a system for optical communications comprises a predistortion module, a feedback subsystem, a transmit optical subsystem, and an external modulator. The predistortion module is operable to receive an input digital signal and modify the input digital signal to produce a digital predistorted signal. The transmit optical subsystem is operable to generate an optical signal from the digital predistorted signal. The modification of the input digital signal is dynamically controlled by the feedback subsystem according to one or more characteristics of the optical signal as determined by the feedback subsystem. The amplitude of the external modulator output is also dynamically controlled by the feedback subsystem.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: October 30, 2018
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Anand Anandakumar, Ioannis Spyropoulos