Patents Assigned to MCube Inc.
  • Patent number: 10479676
    Abstract: A method for a MEMS device includes receiving a diced wafer having a plurality devices disposed upon an adhesive substrate and having an associated known good device data, removing a first set of devices from the plurality of devices from the adhesive substrate in response to the known good device data, picking and placing a first set of the devices into a plurality of sockets within a testing platform, testing the first set of integrated devices includes while physically stressing the first set of devices, providing electrical power to the first set of devices and receiving electrical response data from the first set of devices, determining a second set of devices from the first set of devices, in response to the electrical response data, picking and placing the second set of devices into a transport tape media.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: November 19, 2019
    Assignee: mCube, Inc.
    Inventors: Ben Lee, Ming Hong Kuo, Wen-Chih Chen, Wensen Tsai
  • Patent number: 10393526
    Abstract: An integrated MEMS inertial sensing device can include a MEMS inertial sensor with a drive loop configuration overlying a CMOS IC substrate. The CMOS IC substrate can include an AGC loop circuit coupled to the MEMS inertial sensor. The AGC loop acts in a way such that generated desired signal amplitude out of the drive signal maintains MEMS resonator velocity at a desired frequency and amplitude. A benefit of the AGC loop is that the charge pump of the HV driver inherently includes a ‘time constant’ for charging up of its output voltage. This incorporates the Low pass functionality in to the AGC loop without requiring additional circuitry.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: August 27, 2019
    Assignee: mCube, Inc.
    Inventors: Ali J. Rastegar, Sanjay Bhandari
  • Patent number: 10343896
    Abstract: A method for fabricating an integrated MEMS device and the resulting structure therefore. A control process monitor comprising a MEMS membrane cover can be provided within an integrated CMOS-MEMS package to monitor package leaking or outgassing. The MEMS membrane cover can separate an upper cavity region subject to leaking from a lower cavity subject to outgassing. Differential changes in pressure between these cavities can be detecting by monitoring the deflection of the membrane cover via a plurality of displacement sensors. An integrated MEMS device can be fabricated with a first and second MEMS device configured with a first and second MEMS cavity, respectively. The separate cavities can be formed via etching a capping structure to configure each cavity with a separate cavity volume. By utilizing an outgassing characteristic of a CMOS layer within the integrated MEMS device, the first and second MEMS cavities can be configured with different cavity pressures.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: July 9, 2019
    Assignee: mCube, Inc.
    Inventor: Te-Hsi “Terrence” Lee
  • Patent number: 10324108
    Abstract: A hand-held processor system for processing data from an integrated MEMS device disposed within a hand-held computer system and method. A dynamic offset correction (DOC) process computes 3-axis accelerometer biases without needing to know the orientation of the device. Arbitrary output biases can be corrected to ensure consistent performance A system of linear equations is formed using basic observations of gravity measurements by an acceleration measuring device, conditioned upon constraints in data quality, degree of sensed motion, duration, and time separation. This system of equations is modified and solved when appropriate geometric diversity conditions are met.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: June 18, 2019
    Assignee: mCube, Inc.
    Inventors: Sanjay Bhandari, Joe Kelly
  • Patent number: 10322926
    Abstract: A structure for a MEMS device includes a MEMS layer comprising a mass portion and a spring portion, a substrate coupled to the MEMS layer, wherein the substrate comprises a planar region and an stopper region, wherein the MEMS device and the substrate are oriented in a plurality of relative orientations in response to an external force, wherein the spring portion and the stopper region are configured to disengagingly impact when the external force exceeds a first threshold force, wherein the mass portion and the planar region are configured to disengagingly impact when the external force exceeds a second threshold force, and wherein the second threshold force exceeds the first threshold force.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: June 18, 2019
    Assignee: mCube, Inc.
    Inventors: Sudheer Sridharamurthy, Te-Hsi Terrence Lee, Wenhua Zhang
  • Patent number: 10317333
    Abstract: A system for testing a device under a high gravitational force including a centrifuge with a rotating member and method of operation thereof. An operating power can be applied to a device, which can be coupled to the rotating member. The system can include a rotational control that can be coupled to the centrifuge. This rotational control can be configured to rotate the rotating member in response to a controlled number of revolutions per time period. The system can also include an analysis device for monitoring one or more signals from the device with respect to the controlled number of revolutions per time period. The analysis device can be configured to determine a stiction force associated with the DUT (Device Under Test) in response to the time-varying gravitational forces and to the one or more signals from the DUTs.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: June 11, 2019
    Assignee: MCube Inc.
    Inventor: Raymond Merrill, Jr.
  • Patent number: 10267636
    Abstract: A method for a MEMS device comprises determining in a computer system, a first driving signal for the MEMS device in response to a first time delay and to a base driving signal, applying the first driving signal to the MEMS device to induce the MEMS device to operate at a first frequency, determining a second driving signal for the MEMS device in response to a second time delay and to the base driving signal, applying the second driving signal to the MEMS device to induce the MEMS device to operate at a second frequency, determining a first quality factor associated with the MEMS device in response to the first frequency and the second frequency, determining a quality factor associated with the MEMS device in response to the first quality factor, and determining whether the quality factor associated with the MEMS device, exceeds a threshold quality factor.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: April 23, 2019
    Assignee: mCube, Inc.
    Inventors: Sudheer S. Sridharamurthy, Tony Maraldo, Zheng-Yao Sun, Wenhua Zhang, Te-Hsi Terrence Lee, Sanjay Bhandari, Joseph Rastegar
  • Patent number: 10197587
    Abstract: A computer-implemented method for determining rotational rate of a computer system programmed to perform the method includes determining in a physical perturbation sensor in the computer system, a plurality of instantaneous field measurements with respect to a reference field, at a first time and a second time, determining in the computer system, a plurality of rates of change associated with the physical perturbation sensor in response to the plurality of instantaneous field measurements at the first time and the second time, determining in the computer system, an plurality of estimated rotational rates for the computer system in response to the plurality of rates of change, and performing in the computer system, an operation in response to the plurality of estimated rotational rates.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: February 5, 2019
    Assignee: mCube Inc.
    Inventor: Joseph M. Kelly
  • Patent number: 10183860
    Abstract: A method for fabricating a multiple MEMS device includes providing a semiconductor substrate having a first and second MEMS device, and an encapsulation wafer with a first cavity and a second cavity, which includes at least one channel. The first MEMS is encapsulated within the first cavity and the second MEMS device is encapsulated within the second cavity. These devices is encapsulated within a first encapsulation environment at a first air pressure, and encapsulating the first MEMS device within the first cavity at the first air pressure. The second MEMS device within the second cavity is then subjected to a second encapsulating environment at a second air pressure via the channel of the second cavity.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: January 22, 2019
    Assignee: mCube Inc.
    Inventors: Wenhua Zhang, Shingo Yoneoka
  • Patent number: 10175778
    Abstract: A method for a computing device includes determining in a magnetometer, magnetic data in response to a physical perturbation, determining in an accelerometer, acceleration data in response to the physical perturbation, determining with a processor, computed parameters in response to the magnetic data and the acceleration data, wherein the computed parameters includes a first and a second computed parameter, determining with the processor, an initial motion direction indicator in response to a weighted combination of the first computed parameter and the second computed parameter, determining with the processor, a motion direction indicator in response to the initial motion direction indicator, determining with the processor, a function to perform in response to the motion direction indicator, and displaying on a display of the portable computing device with the processor, a graphic image in response to the function.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: January 8, 2019
    Assignee: MCUBE, INC.
    Inventors: James Wang, Chenglong Fu, Aga Hsu, Kevin Huang
  • Patent number: 10132630
    Abstract: A multi-axis integrated MEMS inertial sensor device. The device can include an integrated 3-axis gyroscope and 3-axis accelerometer on a single chip, creating a 6-axis inertial sensor device. The structure is spatially configured with efficient use of the design area of the chip by adding the accelerometer device to the center of the gyroscope device. The design architecture can be a rectangular or square shape in geometry, which makes use of the whole chip area and maximizes the sensor size in a defined area. The MEMS is centered in the package, which is beneficial to the sensor's temperature performance. Furthermore, the electrical bonding pads of the integrated multi-axis inertial sensor device can be configured in the four corners of the rectangular chip layout. This configuration guarantees design symmetry and efficient use of the chip area.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: November 20, 2018
    Assignee: mCube Inc.
    Inventors: Terrence Lee, Wenhua Zhang, Sudheer Sridharamurthy, Shingo Yoneoka
  • Patent number: 10106399
    Abstract: A method for fabricating a WLCSP device includes receiving a MEMS cap wafer having a first radius, a MEMS device wafer having a second radius, and a CMOS substrate wafer having a third radius, wherein the first radius is smaller than the second radius, and wherein the second radius is smaller than the third radius, disposing the MEMS cap wafer approximately concentrically upon the MEMS device wafer, disposing the MEMS device wafer approximately concentrically upon the CMOS substrate wafer, disposing a spacer structure upon the MEMS device wafer, wherein the spacer structure comprises a plurality of proximity spacers disposed upon a proximity flag, wherein the plurality of proximity spacers are disposed upon the MEMS device wafer, disposing a mask layer in contact to the plurality of proximity spacers, above and substantially parallel to the MEMS cap wafer, and forming a pattern upon the MEMS cap wafer using the mask layer.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: October 23, 2018
    Assignee: MCUBE, INC.
    Inventors: Chien Chen Lee, Tzu Feng Chang
  • Patent number: 10107625
    Abstract: A CMOS IC substrate can include sense amplifiers, demodulation circuits and AGC loop circuit coupled to the MEMS gyroscope. The AGC loop acts in a way such that generated desired signal amplitude out of the drive signal maintains MEMS resonator velocity at a desired frequency and amplitude. The system can include charge pumps to create higher voltages as required in the system. The system can incorporate ADC to provide digital outputs that can be read via serial interface such as I2C. The system can also include temperature sensor which can be used to sense and output temperature of the chip and system and can be used to internally or externally compensate the gyroscope sensor measurements for temperature related changes. The CMOS IC substrate can be part of a system which can include a MEMS gyroscope having a MEMS sensor overlying the CMOS IC substrate.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: October 23, 2018
    Assignee: mCube Inc.
    Inventors: Sanjay Bhandari, Ali J. Rastegar, Sudheer S. Sridharamurthy
  • Patent number: 10078112
    Abstract: A method is provided for implementing a security mechanism in an integrated MEMS (Micro-Electro-Mechanical-System) device having a MEMS sensor with an output register associated with a sensing operation, the integrated MEMS device being electrically coupled to a computing system programmed to perform the method. The method includes, in normal operation, reading from the output register an output of the sensing operation, and in a test mode, determining, by a processor disposed within the computing system, a random value. Determining the random value can include reading from the output register, which in the test mode or provides a value from an internal pattern generator. The method also includes determining, by the processor, a validation value, reading, by the processor, the random value stored in the output register; and determining, by the processor, whether the integrated device is valid using the validation value and the random value stored in the output register.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: September 18, 2018
    Assignee: mCube, Inc.
    Inventors: Sanjay Bhandari, Tony Maraldo
  • Patent number: 10046964
    Abstract: A method for fabricating an integrated MEMS-CMOS device. The method can include providing a substrate member having a surface region and forming a CMOS IC layer having at least one CMOS device overlying the surface region. A bottom isolation layer can be formed overlying the CMOS IC layer and a shielding layer and a top isolation layer can be formed overlying a portion of bottom isolation layer. The bottom isolation layer can include an isolation region between the top isolation layer and the shielding layer. A MEMS layer overlying the top isolation layer, the shielding layer, and the bottom isolation layer, and can be etched to form at least one MEMS structure having at least one movable structure and at least one anchored structure.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: August 14, 2018
    Assignee: mCube Inc.
    Inventors: Te-Hsi “Terrence” Lee, Sudheer S. Sridharamurthy, Shingo Yoneoka, Wenhua Zhang
  • Patent number: 10046966
    Abstract: A method for a MEMS device includes receiving a diced wafer having a plurality devices disposed upon an adhesive substrate and having an associated known good device data, removing a first set of devices from the plurality of devices from the adhesive substrate in response to the known good device data, picking and placing a first set of the devices into a plurality of sockets within a testing platform, testing the first set of integrated devices includes while physically stressing the first set of devices, providing electrical power to the first set of devices and receiving electrical response data from the first set of devices, determining a second set of devices from the first set of devices, in response to the electrical response data, picking and placing the second set of devices into a transport tape media.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: August 14, 2018
    Assignee: MCUBE, INC.
    Inventors: Ben Lee, Ming Hong Kuo, Wen-Chih Chen, Wensen Tsai
  • Patent number: 10036635
    Abstract: A MEMS rate sensor device. In an embodiment, the sensor device includes a MEMS rate sensor configured overlying a CMOS substrate. The MEMS rate sensor can include a driver set, with four driver elements, and a sensor set, with six sensing elements, configured for 3-axis rotational sensing. This sensor architecture allows low damping in driving masses and high damping in sensing masses, which is ideal for a MEMS rate sensor design. Low driver damping is beneficial to MEMS rate power consumption and performance, with low driving electrical potential to achieve high oscillation amplitude.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: July 31, 2018
    Assignee: mCube Inc.
    Inventors: Wenhua Zhang, Sudheer Sridharamurthy, Shingo Yoneoka, Terrence Lee
  • Patent number: 9989988
    Abstract: A method is provided for time synchronization in a MEMS (MicroElectroMecahnical system) based system having a MEMS processor and a plurality of MEMS devices. In a specific embodiment, the method includes, in the MEMS processor, transmitting a synchronization signal to the plurality of MEMS devices and saving a local time upon transmitting the synchronization signal. The MEMS processor also receives sampled data and time information from the plurality of MEMS devices, when the data and information become available. The method also includes, in one or more of the MEMS devices, receiving the synchronization signal from the MEMS processor and storing a local time upon receiving the synchronization signal. The MEMS device also performs a sensing operation and stores sampled sense data and sense time information.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: June 5, 2018
    Assignee: mCube, Inc.
    Inventors: Andy Milota, Jobe Price
  • Patent number: 9975759
    Abstract: A method and structure for a PLCSP (Package Level Chip Scale Package) MEMS package. The method includes providing a MEMS chip having a CMOS substrate and a MEMS cap housing at least a MEMS device disposed upon the CMOS substrate. The MEMS chip is flipped and oriented on a packaging substrate such that the MEMS cap is disposed above a thinner region of the packaging substrate and the CMOS substrate is bonding to the packaging substrate at a thicker region, wherein bonding regions on each of the substrates are coupled. The device is sawed to form a package-level chip scale MEMS package.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: May 22, 2018
    Assignee: MCUBE, INC.
    Inventors: Chien Chen Lee, Tzu Feng Chang
  • Patent number: 9950921
    Abstract: An integrated circuit includes a substrate member having a surface region and a CMOS IC layer overlying the surface region. The CMOS IC layer has at least one CMOS device. The integrated circuit also includes a bottom isolation layer overlying the CMOS IC layer, a shielding layer overlying a portion of the bottom isolation layer, and a top isolation layer overlying a portion of the bottom isolation layer. The bottom isolation layer includes an isolation region between the top isolation layer and the shielding layer. The integrated circuit also has a MEMS layer overlying the top isolation layer, the shielding layer, and the bottom isolation layer. The MEMS layer includes at least one MEMS structure having at least one movable structure and at least one anchored structure. The at least one anchored structure is coupled to a portion of the top isolation layer, and the at least one movable structure overlies the shielding layer.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: April 24, 2018
    Assignee: mCube Inc.
    Inventors: Te-Hsi “Terrence” Lee, Sudheer S. Sridharamurthy, Shingo Yoneoka, Wenhua Zhang