Patents Assigned to MCube Inc.
-
Patent number: 9588194Abstract: A method and structure for operating a magnetoresistive sensor system includes applying a set-reset process wherein the set-reset signal is phased through the magnetoresistive element in such a way that the set-reset field of each region is not released until the adjacent field is aligned. Starting at one end of the magnetoresistive element, the set-reset signal is activated. This aligns the domains directly underneath the first of the set-reset elements. Before this field is released, the adjacent set-reset is activated, which aligned the domains in the adjacent field. Once the adjacent field has been realigned, the set-reset field in the first region can be released, and the set-reset field in the next region can be activated. In this way, no more than two set-reset elements must be active at any one time.Type: GrantFiled: February 1, 2013Date of Patent: March 7, 2017Assignee: mCube Inc.Inventor: Anthony F. Flannery, Jr.
-
Patent number: 9588569Abstract: A portable computing device using power consumption reduction and a method of operating therefor. The method can include the following steps: determining, in a sensor in the portable computing device, orientation changes of the portable computing device; determining, in the portable computing device, a status of a first operation of the portable computing device; determining, in the portable computing device, a status of a second operation of the portable computing device; discontinuing, in the portable computing device, the second operation in response to when the orientation changes of the portable computing device are less than a threshold, and in response to the status of the first operation and the status of the second operation; and outputting, on a display of the portable computing device, an indication to a user that the second operation has been discontinued.Type: GrantFiled: March 24, 2014Date of Patent: March 7, 2017Assignee: mCube, Inc.Inventor: ChengLong Fu
-
Publication number: 20170011972Abstract: A method for fabricating a three-dimensional integrated circuit device includes providing a first substrate having a first crystal orientation, forming at least one or more PMOS devices overlying the first substrate, and forming a first dielectric layer overlying the one or more PMOS devices. The method also includes providing a second substrate having a second crystal orientation, forming at least one or more NMOS devices overlying the second substrate, and forming a second dielectric layer overlying the one or more NMOS devices. The method further includes coupling the first dielectric layer to the second dielectric layer to form a hybrid structure including the first substrate overlying the second substrate.Type: ApplicationFiled: March 18, 2014Publication date: January 12, 2017Applicant: MCube, Inc.Inventor: XIAO (CHARLES) YANG
-
Patent number: 9540232Abstract: A method for fabricating a MEMS-IC device structure can include receiving a CMOS substrate comprising a plurality of CMOS circuits and a surface portion. A MEMS substrate having at least one MEMS device can be received and coupled to the CMOS substrate. The MEMS substrate and the surface portion of the CMOS substrate can be encapsulated with a molding material, which forms a top surface. A first plurality of vias can be created in the molding material from the top surface to the surface portion of the CMOS substrate. A conductive material can be disposed within the first plurality of vias such that the conductive material is electrically coupled to a portion of the CMOS substrate. A plurality of interconnects can be formed from the conductive material to the top surface of the molding material and a plurality of solder balls can be formed upon these interconnects.Type: GrantFiled: October 6, 2014Date of Patent: January 10, 2017Assignee: mCube Inc.Inventor: Chien Chen Lee
-
Patent number: 9541396Abstract: A system comprising an integrated multi-axis MEMS inertial sensor architecture. The system can include a MEMS gyroscope having a MEMS resonator and a MEMS accelerometer overlying a CMOS IC substrate. The CMOS IC substrate can include low noise Charge Sense amplifiers to process the sensed signals, programmable gain amplifiers, a demodulator, mixer, an AGC loop circuit coupled to the MEMS gyroscope to drive MEMS resonator. The CMOS IC also includes programmable Quadrature cancellation, Analog and digital phase shifters are implemented in the architecture to ensure quadrature cancellation and demodulation to achieve optimal performance. The AGC loop acts in a way such that generated desired signal amplitude out of the drive signal maintains MEMS resonator velocity at a desired frequency and amplitude while consuming low power. The MEMS gyroscope and accelerometer can be coupled to an input multiplexer configured to operate in a time-multiplexed manner.Type: GrantFiled: January 21, 2014Date of Patent: January 10, 2017Assignee: mCube Inc.Inventor: Sanjay Bhandari
-
Patent number: 9513122Abstract: An integrated MEMS inertial sensing device can include a MEMS inertial sensor with a drive loop configuration overlying a CMOS IC substrate. The CMOS IC substrate can include an AGC loop circuit coupled to the MEMS inertial sensor. The AGC loop acts in a way such that generated desired signal amplitude out of the drive signal maintains MEMS resonator velocity at a desired frequency and amplitude. A benefit of the AGC loop is that the charge pump of the HV driver inherently includes a ‘time constant’ for charging up of its output voltage. This incorporates the Low pass functionality in to the AGC loop without requiring additional circuitry.Type: GrantFiled: January 17, 2014Date of Patent: December 6, 2016Assignee: mCube Inc.Inventors: Ali J. Rastegar, Sanjay Bhandari
-
Patent number: 9471092Abstract: A method is provided for time synchronization in a MEMS (MicroElectroMechanical system) based system having a MEMS processor and a plurality of MEMS devices. In a specific embodiment, the method includes, in the MEMS processor, transmitting a synchronization signal to the plurality of MEMS devices and saving a local time upon transmitting the synchronization signal. The MEMS processor also receives sampled data and time information from the plurality of MEMS devices, when the data and information become available. The method also includes, in one or more of the MEMS devices, receiving the synchronization signal from the MEMS processor and storing a local time upon receiving the synchronization signal. The MEMS device also performs a sensing operation and stores sampled sense data and sense time information.Type: GrantFiled: February 4, 2013Date of Patent: October 18, 2016Assignee: mCube Inc.Inventors: Andy Milota, Jobe Price
-
Patent number: 9464899Abstract: A gyroscope device and method of operation therefor. The gyroscope device can include a power input, a charge pump portion coupled to the power input, a selection mechanism, a switching mechanism, an oscillator driving mechanism coupled to the switching mechanism, and an oscillator coupled to the charge pump portion and to the oscillator driving mechanism. The method of operation can include providing a first or second selection signal from a selection mechanism associated with the outputting of a DC input power or DC output power from a switching mechanism, respectively. These signals, along with an oscillator driving signal from an oscillator driving mechanism, can be used to initiate and maintain oscillation of an oscillator at a steady-state frequency within a predetermined range of frequencies.Type: GrantFiled: September 25, 2014Date of Patent: October 11, 2016Assignee: mCube Inc.Inventor: Wenhua Zhang
-
Patent number: 9440846Abstract: An integrated MEMS system in which CMOS and MEMS devices are provided to form an integrated CMOS-MEMS system. The system can include a silicon substrate layer, a CMOS layer, MEMS and CMOS devices, and a wafer level packaging (WLP) layer. The CMOS layer can form an interface region, one which any number of CMOS MEMS devices can be configured.Type: GrantFiled: July 28, 2014Date of Patent: September 13, 2016Assignee: mCube, Inc.Inventor: Xiao “Charles” Yang
-
Patent number: 9423473Abstract: A method and structure for a three-axis magnetic field sensing device. An IC layer having first bond pads and second bond pads can be formed overlying a substrate/SOI member with a first, second, and third magnetic sensing element coupled the IC layer. One or more conductive cables can be formed to couple the first and second bond pads of the IC layer. A portion of the substrate member and IC layer can be removed to separate the first and second magnetic sensing elements on a first substrate member from the third sensing element on a second substrate member, and the third sensing element can be coupled to the side-wall of the first substrate member.Type: GrantFiled: January 27, 2015Date of Patent: August 23, 2016Assignee: MCUBE INC.Inventors: Hong Wan, Anthony F. Flannery
-
Patent number: 9418247Abstract: Systems and methods for implementing security mechanisms in integrated devices and related structures. This method can include validating a device ID, generating a random value based on selected seed parameters, performing logic operations from hardware using the random value, and validating the integrated device based on logic operations from software using the random value. The system can include executable instructions for performing the method in a computing system. Various embodiments of the present invention represent several implementations of a security mechanism for integrated devices. These implementations provide several levels of encryption or protection of integrated devices, which can be tailored depending on the hardware and/or software requirements of specific applications.Type: GrantFiled: February 7, 2013Date of Patent: August 16, 2016Assignee: MCUBE INC.Inventors: Sanjay Bhandari, Tony Maraldo
-
Patent number: 9377487Abstract: An improved MEMS transducer apparatus and method is provided. The apparatus has a movable base structure including an outer surface region and at least one portion removed to form at least one inner surface region. At least one intermediate anchor structure is disposed within the inner surface region. The apparatus includes an intermediate spring structure operably coupled to the central anchor structure, and at least one portion of the inner surface region. A capacitor element is disposed within the inner surface region.Type: GrantFiled: June 20, 2013Date of Patent: June 28, 2016Assignee: mCube Inc.Inventors: Daniel N. Koury, Jr., Sudheer Sridharamurthy
-
Patent number: 9376312Abstract: An improved MEMS transducer apparatus and method. The method includes providing a movable base structure having a base surface region overlying a substrate and a center cavity with a cavity surface region. At least one center anchor structure and one spring structure can be spatially disposed within a substantially circular portion of the surface region. The spring structure(s) can be coupled the center anchor structure(s) to a portion of the cavity surface region. The substantially circular portion can be configured within a vicinity of the center of the surface region. At least one capacitor element, having a fixed and a movable capacitor element, can be spatially disposed within a vicinity of the cavity surface region. The fixed capacitor element(s) can be coupled to the center anchor structure(s) and the movable capacitor element(s) can be spatially disposed on a portion of the cavity surface region.Type: GrantFiled: September 18, 2013Date of Patent: June 28, 2016Assignee: mCube Inc.Inventors: Daniel N. Koury, Jr., Anthony F. Flannery, Jr.
-
Patent number: 9379733Abstract: A Synchronous Modulation Resonator (SMR) device, the device includes a resonator having coupled to a Vd source and a Vr source, wherein the Vd is DC biased, wherein the Vr is AC, wherein the resonator provides a resonator output in response to Vd and Vr, a Sigma Delta Modulator (SDM) coupled to the resonator and to the Vr source, wherein the SDM provides a signal output in response to the resonator output and to the Vr, and a digital output block coupled to the SDM, wherein the digital output block is configured to provide a digital signal representation of the resonator output, in response to the signal output.Type: GrantFiled: July 8, 2015Date of Patent: June 28, 2016Assignee: MCUBE, INC.Inventor: Te-Hsi Terrence Lee
-
Patent number: 9377308Abstract: A computer-implemented method for determining an estimated user location performed on a computer system programmed to perform the method includes determining in physical sensors, movements in response to movement of the computer system, determining in a processor a physical context, in response to the movements, determining in the processor whether the physical context is substantially similar to a map-based context associated with a location on the map, when a map-based context is substantially similar to the physical context, the method includes determining in the processor the location on the map associated with the map-based context, determining in the processor a graphical user interface in response to the location on the map, and displaying the graphical user interface on a display of the computer system.Type: GrantFiled: February 4, 2013Date of Patent: June 28, 2016Assignee: mCube Inc.Inventors: Joe Kelly, Jobe Price, Rahul Bakshi, Mark D. Schneider
-
Patent number: 9365412Abstract: A monolithically integrated CMOS and MEMS device. The device includes a first semiconductor substrate having a first surface region and one or more CMOS IC devices on a CMOS IC device region overlying the first surface region. The CMOS IC device region can also have a CMOS surface region. A bonding material can be provided overlying the CMOS surface region to form an interface by which a second semiconductor substrate can be joined to the CMOS surface region. The second semiconductor substrate has a second surface region coupled to the CMOS surface region by bonding the second surface region to the bonding material. The second semiconductor substrate includes one or more first air dielectric regions. One or more free standing MEMS structures can be formed within one or more portions of the processed first substrate.Type: GrantFiled: April 3, 2013Date of Patent: June 14, 2016Assignee: mCube Inc.Inventor: Xiao (Charles) Yang
-
Patent number: 9340414Abstract: An integrated pressure sensing device and method of fabrication thereof are disclosed. The method can include providing a substrate member having a surface region and forming a CMOS IC layer overlying the substrate and forming an oxide layer overlying the CMOS IC layer. A portion of the oxide layer can be removed to form a cavity region. A single crystalline silicon wafer can be bonded overlying the oxide surface region to seal the cavity region. The bonding process can include a fusion bonding or eutectic bonding process. The wafer can be thinned to a desired thickness and portions can be removed and filled with metal materials to form via structures. A pressure sensor device can be formed from the wafer, and can be co-fabricated with another sensor from the wafer. The pressure sensor and the other sensor can share a cavity pressure or have separate cavity pressures.Type: GrantFiled: June 20, 2014Date of Patent: May 17, 2016Assignee: mCube Inc.Inventors: Shingo Yoneoka, Anthony F. Flannery, Jr.
-
Patent number: 9335845Abstract: A computer-implemented method for reducing extraneous input in a portable device programmed to perform the method includes displaying with the portable device, a text entry interface via a display to a user of the portable device, receiving with the portable device, one or more taps on a portion of the portable device other than the display, wherein the one or more taps is associated with a first action, while displaying with the portable device, an interface other than a text entry interface via the display to the user, the method includes performing with the portable device, the first action in response to the one or more taps, and while displaying with the portable device, a text entry interface via the display to the user, the method includes inhibiting with the portable device, the first action in response to the one or more taps.Type: GrantFiled: January 31, 2013Date of Patent: May 10, 2016Assignee: mCube Inc.Inventors: Rahul Bakshi, Jobe Price
-
Patent number: 9321629Abstract: A method and structure for adding mass with stress isolation to MEMS. The structure has a thickness of silicon material coupled to at least one flexible element. The thickness of silicon material can be configured to move in one or more spatial directions about the flexible element(s) according to a specific embodiment. The apparatus also includes a plurality of recessed regions formed in respective spatial regions of the thickness of silicon material. Additionally, the apparatus includes a glue material within each of the recessed regions and a plug material formed overlying each of the recessed regions.Type: GrantFiled: March 17, 2014Date of Patent: April 26, 2016Assignee: mCube Inc.Inventor: Daniel N. Koury, Jr.
-
Patent number: 9291638Abstract: A method for providing acceleration data with reduced substrate-displacement bias includes receiving in an accelerometer an external acceleration, determining the acceleration data with reduced substrate displacement bias in a compensation portion in response to a first and a second displacement indicators from a MEMS transducer, and, in response to substrate compensation factors from a MEMS compensation portion, outputting the acceleration data with reduced substrate displacement bias, wherein the first displacement indicator and the second displacement indicator are determined by the MEMS transducer relative to a substrate in response to the external acceleration and to a substrate displacement, and wherein the substrate compensation factors are determined by the MEMS compensation portion relative to the substrate in response to the substrate displacement.Type: GrantFiled: January 18, 2013Date of Patent: March 22, 2016Assignee: mCube, Inc.Inventors: Raymond Merrill, Jr., Anthony Flannery, Jr., Shingo Yoneoka