Patents Assigned to Medtronic
  • Patent number: 6772006
    Abstract: In one embodiment, a method is characterized by measuring a patient parameter associated with a human body; in response to the patient parameter, retrieving a maximum expected device parameter; and setting a limit on an energy source such that during defibrillation of the patient a defibrillation parameter associated with the maximum expected device parameter is within a defined tolerance. In another embodiment, a method is characterized by specifying at least one device parameter limit of a defibrillation unit; and in response to the at least one specified device parameter, determining a prediction confidence level at which the device parameter limit is exceeded for one or more values of a patient parameter.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: August 3, 2004
    Assignee: Medtronic Physio-Control Manufacturing Corp.
    Inventors: Daniel W. Piraino, D. Craig Edwards
  • Publication number: 20040147952
    Abstract: A mold for forming medical balloons and the balloons formed therefrom are disclosed. The mold has a generally cylindrical inner molding surface for forming a working length of the balloon, and generally cylindrical outer molding surfaces at either end of the mold for forming shafts of the balloon. Joining these outer and inner molding surfaces are taper molding regions composed of two generally conical molding surfaces oriented at two different angles from a longitudinal axis of the mold. A balloon resulting from a manufacturing process using a mold according to the present invention reflects the geometry of the mold and has a unique concave taper profile and a well-defined working length.
    Type: Application
    Filed: January 23, 2003
    Publication date: July 29, 2004
    Applicant: Medtronic AVE, Inc.
    Inventor: Robert J. Murray,
  • Publication number: 20040147963
    Abstract: A medical fluid delivery system includes an implantable medical lead including a fixation element adapted to secure the lead to a tissue site and a fluid delivery device including a tissue piercing distal tip; the device is adapted to pass through a proximal port, a lumen and a distal port of the lead. The system further includes means for adjusting a position of the device distal tip with respect to the lead distal port.
    Type: Application
    Filed: January 8, 2004
    Publication date: July 29, 2004
    Applicant: Medtronic, Inc.
    Inventors: John L. Sommer, James A. Coles, Daniel C. Sigg
  • Publication number: 20040147974
    Abstract: In general, the invention is directed to an implantable medical device assembly having a more space-efficient housing and components, as well as processes for assembling the implantable medical device with reduced assembly cost and less complexity. The implantable medical device may incorporate a battery, capacitor, circuit assembly, feedthrough assembly, and interconnect assembly with respective electrical terminals. This configuration permits the use of automated electronic module assembly techniques such as parallel gap or ribbon bond welding to electrically connect the terminals. A feedthrough assembly may present a set of terminals adjacent a corresponding set of circuit terminals, also enabling the use of automated welding techniques.
    Type: Application
    Filed: January 13, 2004
    Publication date: July 29, 2004
    Applicant: Medtronic, Inc.
    Inventors: David B. Engmark, Thomas Ceballos, Richard A. Bruchmann, Kevin K. Tidemand, George Patras, Todd Schaefer, Robert L. Olson
  • Publication number: 20040147872
    Abstract: A device to determine the level of a substance of interest in a patient's body and provide a therapeutic amount of medicament is disclosed. The level of a substance of interest in the patient's body is determined by iontopheretically sampling the patient's blood and then analyzing the resulting sample to determine the level of the substance of interest. The information about the level of a substance of interest is transmitted to an implanted drug pump in the patient's body. In the preferred embodiment, the substance of interest sensor is an external sensor applied to the user's skin.: In an alternate embodiment, the sensor may be implanted. The preferred method of transmitting information about the level of a substance of interest determined by the sensor is transmitted to an implanted drug pump in the patient's body is via a so called “body bus”.
    Type: Application
    Filed: December 29, 2003
    Publication date: July 29, 2004
    Applicant: Medtronic, Inc.
    Inventor: David L. Thompson
  • Publication number: 20040143259
    Abstract: A method and apparatus for creating a virtual electrode to ablate bodily tissue. The apparatus includes an outer tube, a first electrode, an inner tube and a second electrode. The outer tube is fluidly connected to a source of conductive fluid and defines a proximal end and a distal end. The distal end includes an opening for delivering conductive fluid from the outer tube. The first electrode is disposed at the distal end of the outer tube for applying a current to conductive fluid delivered from the outer tube. The inner tube is coaxially received within the outer tube and is connected to a source of conductive fluid. The inner tube defines a proximal end and a distal end, with the distal end forming an opening for delivering conductive fluid from the inner tube. Finally, the second electrode is disposed at the distal end of the inner tube for applying a current to conductive fluid delivered from the inner tube.
    Type: Application
    Filed: January 8, 2004
    Publication date: July 22, 2004
    Applicant: Medtronic, Inc.
    Inventors: Peter M. J. Mulier, Michael F. Hoey
  • Publication number: 20040143314
    Abstract: A medical fluid delivery system includes an implantable medical lead and a fluid delivery device; the device is adapted to pass through a proximal port, a lumen and a distal port of the lead. The fluid delivery device includes a tissue piercing distal tip and a pre-formed curve in proximity to the distal tip such that the tip is directed away from a lead fixation element after passing beyond the distal port of the lead.
    Type: Application
    Filed: January 8, 2004
    Publication date: July 22, 2004
    Applicant: Medtronic, Inc.
    Inventors: John L. Sommer, James A. Coles, Daniel C. Sigg
  • Publication number: 20040143299
    Abstract: An ADI/R mode is implemented using an intelligent pacing system to continually monitor ventricular response. This ensures AV conduction whenever possible so as to gain all the benefits of cardiac contractile properties resulting from native R-waves. In the event where AV conduction is blocked, the pacing mode is switched to a DDD/R mode to ensure a paced R-wave. Thereafter, subsequent to a completed interval of a p-wave, ADI/R pacing resumes to monitor ventricular response.
    Type: Application
    Filed: January 12, 2004
    Publication date: July 22, 2004
    Applicant: Medtronic, Inc.
    Inventors: David Casavant, Paul A. Belk, Thomas J. Mullen, John C. Stroebel
  • Patent number: 6766190
    Abstract: Implantable medical devices (IMDS) are adapted for developing a vectorcardiograph (VCG) from signals across pairs of electrodes. Sense amplifiers of the IMD are calibrated to correlate the signals to reference sagittal, horizontal and frontal planes of the body. Polar coordinate data is plotted over the time of occurrence of the sensed PQRST electrogram as at least one of an x-axis vector projected into the reference sagittal plane as a sagittal VCG, a y-axis vector projected into the reference horizontal plane as a horizontal VCG, a z-axis vector projected into the reference frontal plane as a frontal VCG, and an xyz-vector in 3-D space. The VCG loops plotted by each of the vectors can also be derived. Thresholding and template matching techniques determine one or more of the maximum vector magnitude and orientation, average axis vector magnitude and orientation, the loop shape, and the loop area representing a particular heart rhythm.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: July 20, 2004
    Assignee: Medtronic, Inc.
    Inventor: Bozidar Ferek-Petric
  • Patent number: 6764487
    Abstract: An electrocautery device is disclosed. In accordance with one aspect of the invention, the electrocautery electrode/tip is provided with a hollow, conductive tube terminating at its distal end in a ball point type tip. Fluid, preferably conductive fluid, is applied to the proximal end of the hollow electrode/tip, and expelled from the distal end thereof during electrocautery. The ball point distal tip allows the distal tip to be directly applied to the tissue and “rolled” or slid along the tissue. This allows the distal tip to be moved across the tissue without dragging or snagging on the tissue. In addition, the conductive fluid expelled from the distal tip further lubricates the distal tip as it moves across the tissue. If conductive fluid is used, the conductive fluid emanating from the electrode/tip conducts the RF electrocautery energy away from the distal tip so that it is primarily the fluid, rather than the distal tip that actually accomplishes the cauterizing of tissue.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: July 20, 2004
    Assignee: Medtronic, Inc.
    Inventors: Peter M. J. Mulier, Michael F. Hoey
  • Patent number: 6766183
    Abstract: Fluorescent biosensor molecules, fluorescent biosensors and systems, as well as methods of making and using these biosensor molecules and systems are described. Embodiments of these biosensor molecules exhibit fluorescence emission at wavelengths greater than about 650 nm. Typical biosensor molecules include a fluorophore that includes an iminium ion, a linker moiety that includes a group that is an anilinic type of relationship to the fluorophore and a boronate substrate recognition/binding moiety, which binds glucose. The fluorescence molecules modulated by the presence or absence of polyhydroxylated analytes such as glucose. This property of these molecules of the invention, as well as their ability to emit fluorescent light at greater than about 650 nm, renders these biosensor molecules particularly well-suited for detecting and measuring in-vivo glucose concentrations.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: July 20, 2004
    Assignees: Medtronic MiniMed, Inc., The Regents of the University of California
    Inventors: Joseph C. Walsh, Aaron M. Heiss, Glenn Noronha, David J. Vachon, Stephen M. Lane, Joe H. Satcher, Jr., Thomas A. Peyser, William Peter Van Antwerp, John Joseph Mastrototaro
  • Publication number: 20040138536
    Abstract: Apparatus and method detect a detection cluster that is associated with a neurological event, such as a seizure, of a nervous system disorder and update therapy parameters that are associated with a treatment therapy. The occurrence of the detection cluster is detected when the maximal ratio exceeds an intensity threshold. If the maximal ratio drops below the intensity threshold for a time interval that is less than a time threshold and subsequently rises above the intensity threshold, the subsequent time duration is considered as being associated with the detection cluster rather than being associated with a different detection cluster. Consequently, treatment of the nervous system disorder during the corresponding time period is in accordance with one detection cluster. Treatment therapy may be provided by providing electrical stimulation, drug infusion or a combination.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 15, 2004
    Applicant: Medtronic, Inc.
    Inventors: Mark G. Frei, Ivan Osorio, Nina M. Graves, Scott F. Schaffner, Mark T. Rise, Jonathon E. Giftakis, David L. Carlson
  • Publication number: 20040138647
    Abstract: A medical device system having a redundant back-up mechanism to ensure that treatment therapy is turned off after a given time duration. Once the treatment therapy is initiated, a cycle ON timer is set. If the ON timer expires prior to receiving any instruction to turn off the treatment therapy, the device responsively turns off the treatment therapy, thereby ensuring that the treatment therapy is not delivered beyond that which is desired.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 15, 2004
    Applicant: Medtronic, Inc.
    Inventors: Ivan Osorio, Naresh C. Bhavaraju, David L. Carlson, Randy M. Jensen
  • Publication number: 20040137547
    Abstract: A method for formulating a glucose oxidase enzyme with peroxide resistant properties and a glucose oxidase enzyme formulated by the method. The enzyme formulation method results in a glucose oxidase enzyme with improve resistance to peroxide, and therefore, with improved resistance to oxidative inactivation. The method employs directed evolution techniques to evolve glucose oxidase to achieve the desirable properties. A peroxide resistant glucose oxidase may improve the longevity of, for example, glucose biosensors in which a peroxide resistant glucose oxidase may be placed.
    Type: Application
    Filed: November 17, 2003
    Publication date: July 15, 2004
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Rajiv Shah, Bahar Reghabi
  • Publication number: 20040138711
    Abstract: A method and medical device system for controlling treatment therapy delivered to treat a nervous system disorder. During start-up, the medical device system prevents the therapy device from delivering therapy to the patient for a predetermined time period after the therapy device has been activated. During operation, before the therapy device is programmed, the system performs a check on the programming information to ensure that the programming information will result in treatment therapy being within of an acceptable range of one or more therapy parameters.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 15, 2004
    Applicant: Medtronic, Inc.
    Inventors: Ivan Osorio, Mark G. Frei, David L. Carlson
  • Publication number: 20040138517
    Abstract: Apparatuses and methods support multi-modal operation of a medical device system for a nervous system disorder. The medical device system comprises an implanted component and an external component and supports a first feature and a second feature that are associated with the treatment therapy. The medical device system supports both features when the implanted component and the external component are coupled. If the external component is decoupled, the implanted component continues to support the first feature. Moreover, the embodiment may support a plurality of features during a treatment interval. Another aspect of the invention allows for modularly expanding a medical device system in order to add a feature that enhances existing functionality or that provides additional functionality. In an embodiment, a module that is associated with an external component of the medical device system supports the added feature.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 15, 2004
    Applicant: Medtronic, Inc.
    Inventors: Ivan Osorio, Mark G. Frei, Mark T. Rise, Scott F. Schaffner, Nina M. Graves
  • Publication number: 20040138721
    Abstract: The present invention uses electrical stimulation of the vagus nerve to treat epilepsy with minimized or no effect on the heart. Treatment is carried out by an implantable signal generator, one or more implantable electrodes for electrically stimulating a predetermined stimulation site of the vagus nerve, and a sensor for sensing characteristics of the heart such as heart rate. The heart rate information from the sensor can be used to determine whether the vagus nerve stimulation is adversely affecting the heart. Once threshold parameters are met, the vagus nerve stimulation may be stopped or adjusted. In an alternative embodiment, the invention may include a modified pacemaker to maintain the heart in desired conditions during the vagus nerve stimulation. In yet another embodiment, the invention may be simply a modified pacemaker having circuitry that determines whether a vagus nerve is being stimulated.
    Type: Application
    Filed: November 13, 2003
    Publication date: July 15, 2004
    Applicant: Medtronic, Inc.
    Inventors: Ivan Osorio, Mark G. Frei
  • Publication number: 20040138580
    Abstract: Method and apparatus for detecting possible interference in a neurological signal received from a monitoring element of a medical device system. The monitoring element monitors a condition or a symptom of a nervous system disorder being treated and provides a neurological signal to the medical device system for purposes of providing closed-loop feedback control. The system analyzes various parameters of the received signal by taking instantaneous measurements of data points in moving window and thereby determining whether the signal is of poor quality. If the signal is of determined poor quality, it is removed from consideration in the closed-loop feedback control system until it is determined that the signal quality has sufficiently been restored.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 15, 2004
    Applicant: Medtronic, Inc.
    Inventors: Mark G. Frei, Ivan Osorio
  • Publication number: 20040138518
    Abstract: Apparatus and method facilitates communications between an implanted component and an external component of a medical device system through a relaying module. The medical device system provides treatment to a patient for a nervous system disorder. The relaying module (which may be worn by the patient) provides telemetry channels between the implanted component and the relaying module and between the telemetry module and the external component. With an implantable configuration the implanted component comprises a monitoring element, a treatment therapy unit, an interfacing unit, and a processing unit, and the external component comprises a programmer. With a hybrid configuration the implanted component comprises a monitoring element, a treatment delivery unit, and an interfacing unit, and the external component comprises a processing unit.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 15, 2004
    Applicant: Medtronic, Inc.
    Inventors: Mark T. Rise, Adrianus P. Donders, Scott F. Schaffner
  • Publication number: 20040138516
    Abstract: Apparatus and method support the configuration and testing of therapy parameters for a medical device system in the treatment of nervous system disorders. With the embodiment, the medical device system operates in a manual treatment therapy mode, in which the medical device system evaluates a set of information that is indicative of a system configuration. The medical device system determines if the set of information is acceptable. During the manual treatment therapy mode, the medical device system applies therapeutic treatment to a patient in accordance with the set of information. If the patient cannot tolerate the therapeutic treatment, the user indicates so through a user interface. The medical device system may associate the patient's intolerance to therapeutic treatments that equal or exceed the patient's level of tolerance. Moreover, the medical device system may use this information to prevent a delivery of therapeutic treatment that exceeds the patient's level of tolerance during a run mode.
    Type: Application
    Filed: October 15, 2003
    Publication date: July 15, 2004
    Applicant: Medtronic, Inc.
    Inventors: Ivan Osorio, Mark G. Frei, Naresh C. Bhavaraju, Thomas E. Peters, Randy M. Jensen