Patents Assigned to Membrane Technology and Research, Inc.
  • Publication number: 20160256835
    Abstract: Disclosed herein is a process for separating components of a gas mixture using gas-separation copolymer membranes. These membranes use a selective layer made from copolymers of perfluorodioxolane monomers. The resulting membranes have superior selectivity performance for gas pairs of interest while maintaining fast gas permeance compared to membranes prepared using conventional perfluoropolymers, such as Teflon® AF, Hyflon® AD, and Cytop®.
    Type: Application
    Filed: May 18, 2016
    Publication date: September 8, 2016
    Applicant: Membrane Technology and Research, Inc.
    Inventors: Zhenjie He, Timothy C. Merkel, Yoshiyuki Okamoto, Yasuhiro Koike
  • Patent number: 9433887
    Abstract: The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: September 6, 2016
    Assignee: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Johannes G Wijmans, Richard W Baker, Timothy C Merkel
  • Publication number: 20160236141
    Abstract: A process for separating components of a gas mixture using gas-separation copolymer membranes. These membranes use a selective layer made from copolymers of an amorphous perfluorinated dioxolane and a fluorovinyl monomer. The resulting membranes have superior selectivity performance for gas pairs of interest while maintaining fast gas permeance compared to membranes prepared using conventional perfluoropolymers such as Teflon® AF, Hlyflon® AD, and Cytop®.
    Type: Application
    Filed: April 28, 2016
    Publication date: August 18, 2016
    Applicants: Membrane Technology and Research, Inc., New York University
    Inventors: Timothy C. Merkel, Hao Zhang, Zhenjie He, Yoshiyuki Okamoto
  • Patent number: 9403120
    Abstract: Disclosed herein is a process for separating components of a gas mixture using gas-separation copolymer membranes. These membranes use a selective layer made from copolymers of perfluorodioxolane monomers. The resulting membranes have superior selectivity performance for gas pairs of interest while maintaining fast gas permeance compared to membranes prepared using conventional perfluoropolymers, such as Teflon® AF, Hyflon® AD, and Cytop®.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: August 2, 2016
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Zhenjie He, Timothy C. Merkel, Yoshiyuki Okamoto, Yasuhiro Koike
  • Publication number: 20160195014
    Abstract: Disclosed herein is a power generation process in which a portion of the carbon dioxide generated by gaseous fuel combustion is recycled back to the power generation process, either pre-combustion, post-combustion, or both. The power generation process of the invention may be a combined cycle process or a traditional power generation process. The process utilizes sweep-based membrane separation.
    Type: Application
    Filed: March 10, 2016
    Publication date: July 7, 2016
    Applicant: Membrane Technology and Research, Inc.
    Inventors: Richard W. Baker, Timothy C. Merkel, Johannes G. Wijmans
  • Patent number: 9309171
    Abstract: A process for treating an effluent gas stream arising from a manufacturing operation that produces an olefin or a non-polymeric olefin derivative. The process involves cooling and condensing the effluent gas stream, which comprises an olefin, a paraffin, and a third gas, to produce a liquid condensate and an uncondensed (residual) gas stream. Both streams are then passed through membrane separation steps. The membrane separation of the uncondensed gas stream results in an olefin-enriched stream and an olefin-depleted stream. The olefin-enriched stream is recirculated within the process prior to the condensation step. The membrane separation of the condensate also results in an olefin-enriched stream, which may be recycled for use within the manufacturing operation, and an olefin-depleted stream, which may be purged from the process.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: April 12, 2016
    Assignee: Membrane Technology and Research, Inc.
    Inventor: Paul Su
  • Patent number: 9302227
    Abstract: A membrane separation assembly that includes an integrated filter element and at least one membrane module housed within a first vessel and a second vessel containing at least one membrane module, which is stacked or aligned adjacent to the first vessel. The first vessel is configured to allow liquids to be trapped and removed from the assembly, and gases to flow to and through the membrane modules of the first vessel and the membrane modules of the second vessel, which are ultimately withdrawn from the assembly. The assembly is useful in the conditioning of fuel gas to separate methane from C2+ hydrocarbons.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: April 5, 2016
    Assignee: Membrane Technology and Research, Inc.
    Inventor: Kaaeid A. Lokhandwala
  • Publication number: 20160075619
    Abstract: A process for treating an effluent gas stream arising from a manufacturing operation that produces an olefin or an olefin derivative. The process involves compressing the feed gas stream, which comprises an olefin, a paraffin, and a third gas, to produce a compressed stream, then cooling and condensing the compressed stream. The condensation step produces a liquid condensate and an uncondensed gas stream. The liquid condensate is then passed through a membrane separation step. The membrane separation of the condensate results in an olefin-enriched stream, which may be recycled for use within the manufacturing operation, and an olefin-depleted stream, which may be purged from the process.
    Type: Application
    Filed: November 11, 2015
    Publication date: March 17, 2016
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventor: Paul Su
  • Publication number: 20160075620
    Abstract: A process for treating an effluent gas stream arising from a manufacturing operation that produces an olefin or a non-polymeric olefin derivative. The process involves cooling and condensing the effluent gas stream, which comprises an olefin, a paraffin, and a third gas, to produce a liquid condensate and an uncondensed (residual) gas stream. Both streams are then passed through membrane separation steps. The membrane separation of the uncondensed gas stream results in an olefin-enriched stream and an olefin-depleted stream. The olefin-enriched stream is recirculated within the process prior to the condensation step. The membrane separation of the condensate also results in an olefin-enriched stream, which may be recycled for use within the manufacturing operation, and an olefin-depleted stream, which may be purged from the process.
    Type: Application
    Filed: July 1, 2015
    Publication date: March 17, 2016
    Applicant: Membrane Technology and Research, Inc.
    Inventor: Paul Su
  • Publication number: 20160045859
    Abstract: A process for separating components of a gas mixture using gas-separation copolymer membranes. These membranes use a selective layer made from copolymers of partially fluorinated or perfluorinated dioxolane monomers and a second monomer, such as dioxane or a partially fluorinated dioxolane. The resulting membranes have superior selectivity performance for gas pairs of interest while maintaining fast gas permeance compared to membranes prepared using conventional perfluoropolymers, such as Teflon® AF, Hyflon® AD, and Cytop®.
    Type: Application
    Filed: October 23, 2015
    Publication date: February 18, 2016
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Hao Zhang, Zhenjie He, Timothy C. Merkel, Yoshiyuki Okamoto, Yasuhiro Koike
  • Patent number: 9221730
    Abstract: Disclosed herein is a process for conditioning natural gas containing C3+ hydrocarbons, so that it can be used as combustion fuel to run gas-powered equipment, including gas engines and turbine-driven compressors, in the gas field or the gas processing plant. The claimed process use glassy polymeric membranes that are preferentially permeable to methane over C2+ hydrocarbons to produce a partially purified methane stream. The process operates at a stage cut of at least about 5%.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: December 29, 2015
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Kaaeid A. Lokhandwala, Maliha Williamson, Sachin Joshi
  • Patent number: 9216931
    Abstract: A process for recovering unreacted olefin in a polyolefin manufacturing process comprising the treatment of a purge bin vent gas. The process involves cooling and condensing the vent gas (purge stream), which contains at least an olefin, a paraffin, and hydrogen, to produce a liquid condensate and an uncondensed (residual) gas stream. Both streams are then passed through membrane separation steps. The membrane separation of the uncondensed gas stream results in a residue stream containing mostly nitrogen and/or paraffin and a permeate stream enriched in either C2+ hydrocarbons or olefin, depending on the type of separation. The permeate from this step is recirculated within the process prior to the condensation step. The membrane separation of the condensate results in a residue stream containing paraffin and a permeate stream enriched in olefin, which may be recycled to the polymerization reactor.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: December 22, 2015
    Assignee: Membrane Technology and Research, Inc.
    Inventor: Paul Su
  • Patent number: 9205380
    Abstract: Disclosed herein is a methanol-to-propylene (MTP) conversion process that utilizes a membrane separation step to increase the recycle of C2 hydrocarbons back to the MTP reactor, thereby increasing propylene product yield and reducing raw material loss.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: December 8, 2015
    Assignee: Membrane Technology and Research, Inc.
    Inventor: Paul Su
  • Patent number: 9138678
    Abstract: Disclosed herein are processes for removing water from organic solvents, such as ethanol. The processes include distillation in two columns operated at sequentially higher pressure, followed by treatment of the overhead vapor by one or two membrane separation steps.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: September 22, 2015
    Assignees: Membrane Technology and Research, Inc., Algenol Biofuels, Inc.
    Inventors: Yu Huang, Richard W. Baker, Benjamin McCool, Rong Dong
  • Patent number: 9140186
    Abstract: A process involving membrane-based gas separation and power generation, specifically for controlling carbon dioxide emissions from gas-fired power plants. The process includes a compression step, a combustion step, and an expansion/electricity generation step, as in traditional power plants. The process also includes a sweep-driven membrane separation step and a carbon dioxide removal or capture step. The carbon dioxide removal step is carried out on a portion of gas from the compression step.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 22, 2015
    Assignee: Membrane Technology and Research, Inc
    Inventors: Xiaotong Wei, Richard W Baker, Timothy C Merkel, Brice C. Freeman
  • Publication number: 20150231555
    Abstract: Disclosed herein is a process for separating components of a gas mixture using gas-separation copolymer membranes. These membranes use a selective layer made from copolymers of perfluorodioxolane monomers. The resulting membranes have superior selectivity performance for gas pairs of interest while maintaining fast gas permeance compared to membranes prepared using conventional perfluoropolymers, such as Teflon® AF, Hyflon® AD, and Cytop®.
    Type: Application
    Filed: July 14, 2014
    Publication date: August 20, 2015
    Applicant: Membrane Technology and Research, Inc.
    Inventors: Zhenjie He, Timothy C. Merkel, Yoshiyuki Okamoto, Yasuhiro Koike
  • Patent number: 9073808
    Abstract: A process for recovering unreacted olefin in a polyolefin manufacturing process comprising the treatment of a purge bin vent gas. The process involves cooling and condensing the vent gas (purge stream), which contains at least an olefin, a paraffin, and nitrogen, to produce a liquid condensate and an uncondensed (residual) gas stream. Both streams are then passed through membrane separation steps. The membrane separation of the uncondensed gas stream results in a residue stream containing mostly nitrogen and/or paraffin and a permeate stream enriched in either C2+ hydrocarbons or olefin, depending on the type of separation. The permeate from this step is recirculated within the process prior to the condensation step. The membrane separation of the condensate results in a residue stream containing paraffin and a permeate stream enriched in olefin, which may be recycled to the polymerization reactor.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: July 7, 2015
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Paul Su, Nicholas P Wynn, Marc Jacobs, Xiaotong Wei, Sylvie Thomas-Droz, Xuezhen Wang
  • Publication number: 20150174524
    Abstract: A gas separation process that utilizes ejector recycle with a membrane separation step in combination with a second separation step. The second separation step may be a second membrane separation, or may involve a different type of separation process. At least a portion of the non-product (i.e. residue) stream withdrawn from the second separation step is directed back to the ejector to form a processing loop. The ejector drives the gas flow in the loop and recycles the non-product stream to the first separation step.
    Type: Application
    Filed: March 5, 2015
    Publication date: June 25, 2015
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Nicholas P. Wynn, Haiqing Lin, Meijuan Zhou, Jennifer Ly, Adrian Serbanescu-Martin
  • Patent number: 9061252
    Abstract: Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: June 23, 2015
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Yu Huang, Richard W. Baker, Tiem Aldajani, Jennifer Ly
  • Publication number: 20150158795
    Abstract: Gas separation processes are provided for separating dehydrogenation reaction products from a raw gas stream to recover hydrocarbons, specifically olefins, such as propylene and iso-butene, as well as unreacted feedstock. The processes employ a sequence of partial condensation steps, interspersed with membrane separation steps to raise the hydrocarbon dewpoint of the uncondensed gas, thereby avoiding the use of low-temperature or cryogenic conditions.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 11, 2015
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventors: Nicholas P. Wynn, Alvin Ng, Douglas Gottschlich, Paul Su, Meijuan Zhou, Sylvie Thomas-Droz