Patents Assigned to Microsemi Corporation
  • Patent number: 9490718
    Abstract: A multiple output power converter constituted of: an inductance element arranged, responsive to a switching circuit to receive power and arranged to output a function of the received power for a predetermined time period, the secondary side exhibiting a predetermined voltage during the predetermined time period; a control circuitry arranged to switch the switching circuit so as to maintain a first output at a predetermined level; a second output; and an electronically controlled switch arranged to be alternately in a closed state and an open state, the second output arranged to receive or not receive a portion of the output power responsive to the state, the switch set in synchronization with the switching circuit.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: November 8, 2016
    Assignee: Microsemi Corporation
    Inventor: Xiaoping Jin
  • Patent number: 9491815
    Abstract: A resonant converter is provided with a plurality of secondary transformer windings. A first secondary winding provides a fixed output, which is utilized to control the switching frequency of the resonant converter. A second secondary winding drives one or more LED luminaires, and is provided with a secondary side resonant circuit. When the feedback from the first output calls for a reduced frequency so as to increase the output, the reduced frequency results in an increased impedance of the secondary side resonant circuit so as to prevent any voltage rise for the LED luminaires. When the feedback from the first output calls for an increased frequency so as to reduce the output, the increased frequency results in an decreased impedance of the secondary side resonant circuit so as to prevent any voltage fall for the LED luminaires.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: November 8, 2016
    Assignee: Microsemi Corporation
    Inventor: Xiaoping Jin
  • Patent number: 9478606
    Abstract: A high power, high current Unidirectional Transient Voltage Suppressor, formed on SiC starting material is disclosed. The device is structured to avalanche uniformly across the entire central part (active area) such that very high currents can flow while the device is reversely biased. Forcing the device to avalanche uniformly across designated areas is achieved in different ways but consistently in concept, by creating high electric fields where the device is supposed to avalanche (namely the active area) and by relaxing the electric field across the edge of the structure (namely in the termination), which in all embodiments meets the conditions for an increased reliability under harsh environments.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: October 25, 2016
    Assignee: Microsemi Corporation
    Inventors: Dumitru Sdrulla, Bruce Odekirk, Cecil Kent Walters
  • Patent number: 9408150
    Abstract: A wake-up system includes an instigator for transmitting a wake-up message from a primary node to a receiver at a secondary node. The instigator sends a wake-up on either first RF channel or a second RF channel having respective frequencies such that the second RF channel is an image of the first RF channel at a local oscillator frequency of the receiver. The receiver includes an RF filter that passes both the image and non-image channels, a frequency generator for generating a local oscillator signal at the local oscillator frequency, and a mixer for mixing the filtered modulated RF signal with said local oscillator signal to generate a modulated intermediate frequency (IF) signal. The receiver monitors both the image and non-image channels simultaneously for a valid wake-up message. A wake-up message detector indicates a wake-up condition in response to the reception of a valid wake-up message.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: August 2, 2016
    Assignee: Microsemi Corporation
    Inventors: Peter Bradley, Andy Bottomley
  • Patent number: 9374452
    Abstract: A powering arrangement for use with reverse power feeding arranged to detect an improperly connected POTS phone going off-hook by: measuring a first current flow from a power sourcing equipment; identifying a rapid first increase in current flow from the measured first current flow, the rapid increase defined as a rate of change greater than a predetermined minimum rate of change; identifying a second increase in current flow from the measured first current flow, the identified second increase greater than a predetermined minimum amount; confirming that the identified second increase in current flow is maintained for at least a predetermined amount of time beginning with the identified first increase in current flow; and outputting an error signal to the power sourcing equipment in the event of the identified condition.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: June 21, 2016
    Assignee: Microsemi Corporation
    Inventors: Arkadiy Peker, Daniel Feldman, Shahar Feldman
  • Patent number: 9362828
    Abstract: A converter constituted of: an inductor; a plurality of electronically controlled switches; and a control circuitry arranged to operate in a buck-boost mode responsive to the output voltage of the converter being within a predetermined range of the input voltage of the converter, the control circuitry arranged in the buck-boost mode: responsive to a current flowing through the inductor being lower than a predetermined low current threshold, to control the switches to couple the inductor between the input voltage and a common potential; responsive to the current flowing through the inductor being greater than a predetermined medium current threshold, to control the switches to couple the inductor between the input voltage and the output voltage; and responsive to the current flowing through the inductor being greater than a predetermined high current threshold, to control the switches to couple the inductor between the output voltage and the common potential.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: June 7, 2016
    Assignee: Microsemi Corporation
    Inventors: Arkadiy Peker, Kevin Mark Smith, Jr., Dror Korcharz
  • Patent number: 9319537
    Abstract: A power supply unit includes a plurality of the interface ports and a plurality of power delivery units, each coupled to one of the interface ports and configured to extract power from data signals communicated over the interface ports by remote devices. A sharing circuit is coupled to each of the power delivery units for generating a power supply voltage from the power extracted from the data signals. A controller is configured to generate a communication line power loss estimate for each of the interface ports and configure the power delivery units to balance amounts of power supplied by each of the remote devices based on the communication line power loss estimates.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: April 19, 2016
    Assignee: Microsemi Corporation
    Inventors: Arkadiy Peker, Daniel Feldman, Shahar Feldman, Roni Blaut
  • Patent number: 9212992
    Abstract: A solid-state photodetector with variable spectral response that can produce a narrow or wide response spectrum of incident light. Some embodiments include a solid-state device structure that includes a first photodiode and a second photodiode that share a common anode region. Bias voltages applied to the first photodiode and/or the second photodiode may be used to control the thicknesses of depletion regions of the photodiodes and/or a common anode region to vary the spectral response of the photodetector. Thickness of the depletion regions and/or the common anode region may be controlled based on resistance between multiple contacts of the common anode region and/or capacitance of the depletion regions. Embodiments include control circuits and methods for determining spectral characteristics of incident light using the variable spectral response photodetector.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: December 15, 2015
    Assignee: Microsemi Corporation
    Inventor: Michael J. McNutt
  • Publication number: 20150308860
    Abstract: Inductive displacement sensors and methods of using them may be useful in a variety of contexts. For example, systems for precisely measuring linear or angular motion may use inductive displacement sensors to measure changes in position. An apparatus, such as a sensor, can include a primary inductor. The apparatus can also include a first secondary inductor that is field-coupled to the primary inductor. The apparatus can further include a second secondary inductor that is field-coupled to the primary inductor. The first secondary inductor and the second secondary inductor can be configured as coordinated inductors to detect motion of a coupler. The coordinated inductors can be configured to provide a reference signal and a measurement signal, wherein the reference signal has a constant amplitude across a range of motion of the coupler.
    Type: Application
    Filed: April 28, 2015
    Publication date: October 29, 2015
    Applicant: Microsemi Corporation
    Inventors: Shiju Wang, Timothy R. Jackson
  • Patent number: 9153516
    Abstract: A system can include a semiconductor die having a first side and a second side opposite the first side. The system can also include a first slug coupled to a portion of the first side of the die. The system can further include a second slug coupled to a portion of the second side of the die. The system can additionally include an insulating material voidlessly encapsulating the die. The first slug can include a first portion having a first width in proximity to the die and a second portion having a second width. The first portion can be closer than the second portion to the die and the first width can be smaller than the second width.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: October 6, 2015
    Assignee: Microsemi Corporation
    Inventor: Cecil Kent Walters
  • Patent number: 9154090
    Abstract: Devices and methods for correcting for start-up transients in integrated power amplifiers are disclosed. A delay element is arranged to produce a delay waveform signal that is responsive to an input voltage signal. A transconductance element has an input that receives the delay waveform signal and is arranged to provide an output boost current that is based on the delay waveform signal and a gain of the transconductance element. A reference element provides an output bias current that is responsive to a static reference current and the boost current. A bias element has an input that receives the bias current and is arranged to provide a bias control output. A power amplifier is responsive to the bias control output and is arranged to provide an amplified power output.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: October 6, 2015
    Assignee: MICROSEMI CORPORATION
    Inventor: Kyle Hershberger
  • Patent number: 9136802
    Abstract: Devices and methods for correcting for start-up transients in integrated power amplifier are disclosed. A power amplifier is responsive to a bias control output and is arranged to provide an amplified power output. In some examples, the boost current is adjusted based on a supply voltage and an input power of the power amplifier. The power amplifier can operate in a low power and a high power mode and the adjustments can be made to the supply voltage and/or the input power vary depending on whether the power amplifier is operating in the high or low power mode. The adjustments for the high power mode operation are different than and correspond to the high power mode input power and voltage and the adjustments for the low power mode operation are different than and correspond to the low power mode input power and voltage.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: September 15, 2015
    Assignee: Microsemi Corporation
    Inventors: Darcy Poulin, Kyle Hershberger, Brian Eplett, Mark Santini
  • Patent number: 9128494
    Abstract: An apparatus for assessing at least one property of a target soil responsive to a first a first microwave signal, constituted of: a detector; a probe arranged to be embedded in the target soil; and a coupler arranged to couple a first portion of the first microwave signal to the first end of the probe, and to couple a second portion of the generated first microwave signal as a microwave reference signal to a reference input of the detector; the detector arranged to square each of the microwave signal exiting the probe and the microwave reference signal and to output a phase difference signal indicative of the phase difference between the squared probe output microwave signal and the squared microwave reference signal; and a control circuitry coupled to the output of the detector and arranged to output an irrigation control signal responsive to the phase difference signal.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: September 8, 2015
    Assignee: Microsemi Corporation
    Inventors: Joseph Andrew Viera, Heyward Sturges Williams
  • Patent number: 9118281
    Abstract: Devices and methods for correcting for start-up transients in integrated power amplifiers are disclosed. A delay element is arranged to produce a delay waveform signal that is responsive to an input voltage signal. A transconductance element has an input that receives the delay waveform signal and is arranged to provide an output boost current that is based on the delay waveform signal and a gain of the transconductance element. A reference element provides an output bias current that is responsive to a static reference current and the boost current. A bias element has an input that receives the bias current and is arranged to provide a bias control output. A power amplifier is responsive to the bias control output and is arranged to provide an amplified power output. In some examples, the boost current is adjusted based on a supply voltage and an input power of the power amplifier.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: August 25, 2015
    Assignee: MICROSEMI CORPORATION
    Inventors: Kyle Hershberger, Brian Eplett, Mark Santini
  • Patent number: 9040377
    Abstract: A Vertical Multiple Implanted Silicon Carbide Power MOSFET (VMIMOSFET) includes a first conductivity semiconductor substrate, a first conductivity semiconductor drift layer on the top of the substrate, a multitude of second conductivity layers implanted in the drift layer. The body layer is where the channel is formed. A first conductivity source layer is interspaced appropriately inside of the second conductivity layers. A gate oxide of a certain thickness and another oxide of a different thickness, a greater thickness than the gate oxide, placed in between the body layers but in such way that its shape does not distort the gate oxide in the channel. A charge compensated body layer of the second conductivity formed outside of the channel region and only at specific high electric field locations in the structure. The device and the manufacturing method deliver a power SiC MOSFET with increased frequency of operation and reduced switching losses.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: May 26, 2015
    Assignee: MICROSEMI CORPORATION
    Inventors: Dumitru Sdrulla, Bruce Odekirk, Marc H. Vandenberg
  • Patent number: 9030119
    Abstract: A solid state lighting driver arrangement exhibiting a plurality of LED strings receiving power from a single power source, the single power source providing a discontinuous current, wherein a plurality of first windings are provided, each associated with a particular LED string and coupled to provide current balancing between the various LED strings. The discontinuous current resets the windings during the off time or during a reversal period. In one particular embodiment, a second winding is magnetically coupled to each of the first windings, and the second windings are connected in a closed in-phase loop. In another particular embodiment, at least two of the first windings are magnetically coupled to each other, thus ensuring a balance between current in each LED string.
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: May 12, 2015
    Assignee: Microsemi Corporation
    Inventor: Xiaoping Jin
  • Patent number: 9018852
    Abstract: A light emitting diode (LED) based luminaire driving arrangement constituted of: a switched driver; a plurality of LED based luminaires arranged to receive power from the switched driver; at least one electronically controlled switch in series with at least one of the plurality of LED based luminaires and arranged to alternatively pass current through the at least one LED based luminaire when closed and prevent the flow of current through the at least one LED based luminaire when opened; and at least one synchronous driver in communication with the at least one electronically controlled switch, the at least one synchronous driver arranged to close the at least one electronically controlled switch only when the switched driver is actively supplying power.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: April 28, 2015
    Assignee: Microsemi Corporation
    Inventor: Xiaoping Jin
  • Patent number: 8988056
    Abstract: A hysteretic power converter constituted of: a switched mode power supply; a hysteretic comparator, a first input of the comparator arranged to receive a feedback signal providing a representation of the output voltage of the switched mode power supply and a second input of the comparator arranged to receive a reference voltage; a ramp capacitor coupled to one of the first and second input of the comparator; a current source, a terminal of the current source coupled to the ramp capacitor and arranged to drive current to the ramp capacitor; and a switchable current source, a terminal of the switchable current source coupled to the ramp capacitor, the switchable current source arranged to drive current to the ramp capacitor in a direction opposite the current driven by the current source, wherein the switchable current source is alternately enabled and disabled responsive to the output of the hysteretic comparator.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: March 24, 2015
    Assignee: Microsemi Corporation
    Inventors: Kevin Mark Smith, Jr., Ekrem Cengelci
  • Patent number: 8947164
    Abstract: A power amplifier has power detection capabilities that include a radio frequency (RF) power amplifier that has a gain stage that includes a gain stage input, a gain stage output, and a feedback loop coupled between an input and an output of the power amplifier. A detection circuit has a first detection circuit input electrically coupled to the gain stage input and has a detection circuit output. An amplitude control circuit and a phase control circuit are electrically coupled together in series between the gain stage output and a second detection circuit input. The amplitude control circuit and the phase control circuit produce a signal that is received by the second detection circuit input so that the detection circuit can detect a signal at the detection circuit output that is proportional to a the forward power output of the power amplifier and is insensitive to power amplifier output load mismatch.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: February 3, 2015
    Assignee: Microsemi Corporation
    Inventor: Brian Eplett
  • Patent number: 8941456
    Abstract: A power supply arrangement constituted of: an isolated power supply having a primary side and a secondary side, the secondary side electrically isolated from the primary side; a common mode choke having a first winding and a second winding wound on a common core, the common mode choke coupled between the primary side of the isolated power supply and an AC mains; and a shielding surrounding the common mode choke, the shielding coupled to a common potential of the secondary side of the isolated power supply.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: January 27, 2015
    Assignee: Microsemi Corporation
    Inventors: Hwangsoo Choi, Mike Lewis, Shiju Wang