Abstract: A system includes a plurality of chips, at least one of said chips having transmission circuitry constructed and adapted to emit a signal in the form of electro-magnetic radiation (EMR), said transmission circuitry including one or more nano-resonant structures that emit said EMR when exposed to a beam of charged particles, and at least some of said chips having receiver circuitry constructed and adapted to receive an EMR signal. A connector is constructed and adapted to receive emitted EMR from said at least one of said chips having transmission circuitry and further constructed and adapted to provide data in said EMR emitted by said at least one of said chips to receiver circuitry of at least some others of said plurality of chips.
Abstract: A device includes a waveguide layer formed on a substrate. An ultra-small resonant structure emits electromagnetic radiation (EMR) in the waveguide layer. One or more circuits are formed on the waveguide layer and each operatively connected thereto to receive the EMR emitted by the ultra-small resonant structure. The waveguide layer may be transparent at wavelengths corresponding to wavelengths of the EMR emitted by the ultra-small resonant structure. The EMR may be visible light and may encode a data signal such as a clock signal.
Type:
Application
Filed:
May 5, 2006
Publication date:
November 8, 2007
Applicant:
Virgin Islands Microsystems, Inc.
Inventors:
Jonathan Gorrell, Mark Davidson, Michael Maines
Abstract: A method for controlling sharing of resources in a multi-threaded environment includes entering a finite state machine state sequence; controlling resource-sharing threads using the finite state machine state sequence; and exiting the finite state machine state sequence when shared resource control is complete. A multi-threaded shared resource control system includes a finite state machine configured to control multi-threaded access to shared resources; a plurality of producer threads regulated by the finite state machine; and a plurality of consumer threads regulated by the finite state machine.
Abstract: A device and method is provided that includes a window for coupling a signal between cavities of a device or between cavities of different devices. A wall or microstructure is formed on a surface and defines a cavity. The window is formed in the wall and comprises at least a portion of the wall and is electrically conductive. The cavity can be sized to resonate at various frequencies within the terahertz portion of the electromagnetic spectrum and generate an electromagnetic wave to carry the signal. The window allows surface currents to flow without disruption on the inside surface of the cavity.
Abstract: In one embodiment, a memory controller for a node in a multi-node computer system comprises logic and a control unit. The logic is configured to determine if an address corresponding to a request received by the memory controller on an intranode interconnect is a remote address or a local address. A first portion of the memory in the node is allocated to store copies of remote data and a remaining portion stores local data. The control unit is configured to write writeback data to a location in the first portion. The writeback data corresponds to a writeback request from the intranode interconnect that has an associated remote address detected by the logic. The control unit is configured to determine the location responsive to the associated remote address and one or more indicators that identify the first portion in the memory.
Type:
Application
Filed:
May 4, 2006
Publication date:
November 8, 2007
Applicant:
Sun Microsystems, Inc.
Inventors:
Hakan Zeffer, Anders Landin, Erik Hagersten
Abstract: In an optical switch, a set of coherent electromagnetic radiation is selectively delayed and recombined to produce constructively or destructively combined radiation. When the radiation is constructively combined, a signal is transmitted out of the switch to a remote receiver. When the radiation is destructively combined, a signal is not transmitted out of the switch to a remote receiver.
Abstract: A sensor device includes a substrate having first and second regions of first and second conductivity types, respectively. A junction having a band-gap is formed between the first and second regions. A plasmon source generates plasmons having fields. At least a portion of the plasmon source is formed near the junction, and the fields reduce the band-gap to enable a current to flow through the device.
Abstract: When using micro-resonant structures which are being excited and caused to resonate by use of a charged particle beam, whether as emitters or receivers, especially in a chip or circuit board environment, it is important to prevent the charged particle beam from coupling to or affecting other structures or layers in the chip or circuit board. Shielding can be provided along the path of the charged particle beam, on top of the substrate, to prevent such coupling.
Abstract: An eject mechanism for a module includes a module casing; a module engaged in the module casing; the module including a cable port; and an eject button for allowing disengagement of the module from the module casing. The eject button prevents the module from disengagement when a cable is plugged into the cable port. A method of ejecting a module from a module casing includes disengaging the module from the module casing upon the pressing of an eject button, and preventing the module from disengagement when a cable is plugged into a cable port of the module.
Type:
Application
Filed:
May 4, 2006
Publication date:
November 8, 2007
Applicant:
Sun Microsystems, Inc.
Inventors:
Leslie Keller, Brett Ong, William De Meulenaere
Abstract: A filter for use with an array of ultra-small resonant structures that are producing encoded EMR wherein the filter is designed to either reflect encoded EMR beams or to permit certain frequencies to pass there through so that the encoded EMR beam and its encoded data can be transmitted out of the device and to another receiver where the data can be used.
Abstract: Test apparatus for examining the operation and functioning of ultra-small resonant structures, and specifically using an SEM as the testing device and its electron beam as an exciting source of charged particles to cause the ultra-small resonant structures to resonate and produce EMR.
Type:
Application
Filed:
May 5, 2006
Publication date:
November 8, 2007
Applicant:
Virgin Islands Microsystems, Inc.
Inventors:
Jonathan Gorrell, Mark Davidson, Jean Tokarz
Abstract: A device for coupling energy in a plasmon wave to an electron beam includes a metal transmission line having a pointed end; a generator mechanism constructed and adapted to generate a beam of charged particles; and a detector microcircuit disposed adjacent to the generator mechanism. The generator mechanism and the detector microcircuit are disposed adjacent the pointed end of the metal transmission line and wherein a beam of charged particles from the generator mechanism to the detector microcircuit electrically couples the plasmon wave traveling along the metal transmission line to the microcircuit.
Type:
Application
Filed:
May 5, 2006
Publication date:
November 8, 2007
Applicant:
Virgin Islands Microsystems, Inc.
Inventors:
Jonathan Gorrell, Mark Davidson, Michael Maines
Abstract: A device includes first and second chips, each chip containing at least one electronic circuit. The second chip has one or more receivers. A deflection mechanism operationally connected to an electronic circuit of the first chip directs a charged particle beam to different ones of the receivers, based, at least in part, on a data signal provided by the electronic circuit.
Abstract: A nano-resonating structure constructed and adapted to couple energy from a beam of charged particles into said nano-resonating structure and to transmit coupled energy outside the nano-resonating structure. A plurality of the nano-resonant substructures may be formed adjacent one another in a stacked array, and each may have various shapes, including segmented portions of shaped structures, circular, semi-circular, oval, square, rectangular, semi-rectangular, C-shaped, U-shaped and other shapes as well as designs having a segmented outer surface or area, and arranged in a vertically stacked array comprised of one or more ultra-small resonant structures. The vertically stacked arrays may be symmetric or asymmetric, tilted, and/or staggered.
Type:
Application
Filed:
May 5, 2006
Publication date:
November 8, 2007
Applicant:
Virgin Islands Microsystems, Inc.
Inventors:
Jonathan Gorrell, Mark Davidson, Jean Tokarz
Abstract: A lock-free implementation of an ordered data structure allows updating of the data structure without disturbing the ordering relied upon for accessing the data structure. After searching and finding an element in a data structure in accordance with an update operation (i.e., an insert operation or a remove operation), values are successively copied to shift the values either up or down the data structure. If an insert operation is being performed, then the new value is eventually inserted to overwrite a duplicate value in the data structure. If a delete operation is being performed, then a value is shifted over the value to be deleted.
Abstract: In a laser system, a set of substantially coherent electromagnetic radiation is applied as an input to a Raman laser. The Raman laser may be fabricated on the same integrated circuit as the source of the substantially coherent electromagnetic radiation or may be fabricated on a different integrated circuit as the source of the substantially coherent electromagnetic radiation.
Abstract: An array of ultra-small structures of between ones of nanometers to hundreds of micrometers in size that can be energized to produce at least two different frequencies of out put energy or data, with the ultra small structures being formed on a single conductive layer on a substrate. The array can include one row of different ultra small structures, multiple rows of ultra small structures, with each row containing identical structures, or multiple rows of a variety of structures that can produce all spectrums of energy or combinations thereof, including visible light.
Type:
Application
Filed:
May 5, 2006
Publication date:
November 8, 2007
Applicant:
Virgin Islands Microsystems, Inc.
Inventors:
Jonathan Gorrell, Mark Davidson, Jean Tokarz, Andres Trucco
Abstract: When using micro-resonant structures, it is possible to use the same source of charged particles to cause multiple resonant structures to emit electromagnetic radiation. This reduces the number of sources that are required for multi-element configurations, such as displays with plural rows (or columns) of pixels. In one such embodiment, at least one deflector is placed in between first and second resonant structures. After the beam passes by at least a portion of the first resonant structure, it is directed to a path such that it can be directed towards the second resonant structure. The amount of deflection needed to direct the beam toward the second resonant structure is based on the amount of deflection, if any, that the beam underwent as it passed by the first resonant structure. This process can be repeated in series as necessary to produce a set of resonant structures in series.
Type:
Application
Filed:
May 5, 2006
Publication date:
November 8, 2007
Applicant:
Virgin Islands Microsystems, Inc.
Inventors:
Jonathan Gorrell, Mark Davidson, Henry Davis
Abstract: An electronic transmitter or receiver employing electromagnetic radiation as a coded signal carrier is described. In the transmitter, the electromagnetic radiation is emitted from ultra-small resonant structures when an electron beam passes proximate the structures. In the receiver, the electron beam passes near ultra-small resonant structures and is altered in path or velocity by the effect of the electromagnetic radiation on structures. The electron beam is accelerated to an appropriate current density without the use of a high power supply. Instead, a sequence of low power levels is supplied to a sequence of anodes in the electron beam path. The electron beam is thereby accelerated to a desired current density appropriate for the transmitter or receiver application without the need for a high-level power source.
Abstract: A cover for use together with a transmitter of an encoded light or EMR beam for intercepting and re-directing the beam away from the transmitter toward a receiver, an optical device or another solid state device whereby data encoded on the encoded light or EMR beam can be transmitted out of the transmitter to a receiver and the data encoded thereon can be used or retransmitted.