Patents Assigned to MICROUNITY SYSTEMS
  • Patent number: 5232047
    Abstract: A microscopic laminar-flow heat exchanger, well-suited for cooling a heat generating device such as a semiconductor integrated circuit, includes a plurality of thin plates, laminated together to form a block. Each plate has a microscopic recessed portion etched into one face of the plate and a pair of holes cut through the plate such that when the block is formed, the holes align to form a pair of coolant distribution manifolds. The manifolds are connected via the plurality of microscopic channels formed from the recessed portions during the lamination process. Coolant flow through these channels effectuates heat removal.
    Type: Grant
    Filed: January 14, 1992
    Date of Patent: August 3, 1993
    Assignee: Microunity Systems Engineering, Inc.
    Inventor: James A. Matthews
  • Patent number: 5182225
    Abstract: A method for forming a BICMOS integrated circuit having MOS field-effect devices and bipolar junction transistors formed in a silicon substrate is disclosed. The process comprises the steps of first defining separate active areas in a substrate for each of the transistors. Next, a gate dielectric layer is formed over the surface of the wafer. Above the gate dielectric, a first layer of polysilicon is deposited. This first layer of polysilicon is then selectively etched to form a plurality of first polysilicon members each of which is equally-spaced apart from one another. The polysilicon members comprise the gates of the MOS transistors and the extrinsic base contacts of the NPN transistors. After the first polysilicon members have been defined, the base regions of the NPN transistors are formed. After insulating the first polysilicon members, an additional layer of polysilicon is deposited over the substrate to replanarize the entire wafer surface.
    Type: Grant
    Filed: January 28, 1991
    Date of Patent: January 26, 1993
    Assignee: MicroUnity Systems Engineering, Inc.
    Inventor: James A. Matthews
  • Patent number: 5134083
    Abstract: A method for forming a BICMOS integrated circuit having MOS field-effect devices and bipolar junction transistors formed in a silicon substrate is disclosed. The process comprises the steps of first defining separate active areas in a substrate for each of the transistors. Next, a gate dielectric layer is formed over the surface of the wafer. Above the gate dielectric, a first layer of polysilicon is deposited. This first layer of polysilicon is then selectively etched to form a plurality of first polysilicon members each of which is equally-spaced apart from one another. The polysilicon members comprise the gates of the MOS transistors and the extrinsic base contacts of the NPN transistors. After the first polysilicon members have been defined, the base regions of the NPN transistors are formed. After insulating the first polysilicon members, an additional layer of polysilicon is deposited over the substrate to replanarize the entire wafer surface.
    Type: Grant
    Filed: January 28, 1991
    Date of Patent: July 28, 1992
    Assignee: MicroUnity Systems Engineering, Inc.
    Inventor: James A. Matthews
  • Patent number: 5132237
    Abstract: A method for forming a BICMOS integrated circuit having MOS field-effect devices and bipolar junction transistors formed in a silicon substrate is disclosed. The process comprises the steps of first defining separate active areas in a substrate for each of the transistors. Next, a gate dielectric layer is formed over the surface of the wafer. Above the gate dielectric, a first layer of polysilicon is deposited. This first layer of polysilicon is then selectively etched to form a plurality of first polysilicon members each of which is equally-spaced apart from one another. The polysilicon members comprise the gates of the MOS transistors and the extrinsic base contacts of the NPN transistors. After the first polysilicon members have been defined, the base regions of the NPN transistors are formed. After insulating the first polysilicon members, an additional layer of polysilicon is deposited over the substrate to replanarize the entire wafer surface.
    Type: Grant
    Filed: January 28, 1991
    Date of Patent: July 21, 1992
    Assignee: MicroUnity Systems Engineering, Inc.
    Inventor: James A. Matthews
  • Patent number: 5125451
    Abstract: A microscopic laminar-flow heat exchanger, well-suited for cooling a heat generating device such as a semiconductor integrated circuit, includes a plurality of thin plates, laminated together to form a block. Each plate has a microscopic recessed portion etched into one face of the plate and a pair of holes cut through the plate such that when the block is formed, the holes align to form a pair of coolant distribution manifolds. The manifolds are connected via the plurality of microscopic channels formed from the recessed portions during the lamination process. Coolant flow through these channels effectuates heat removal.
    Type: Grant
    Filed: April 2, 1991
    Date of Patent: June 30, 1992
    Assignee: MicroUnity Systems Engineering, Inc.
    Inventor: James A. Matthews
  • Patent number: 5124580
    Abstract: A BiCMOS logic circuit utilizes an emitter-coupled pair of bipolar transistors for differentially comparing an input signal with a logic reference level. Each of the bipolar transistors are resistively loaded by a p-channel metal-oxide-semiconductor (PMOS) transistor. An emitter follower, having its base coupled to the collector of one of the bipolar transistors and its collector connected to the first power supply potential, provides the output signal. NMOS transistors are used as current sources for biasing the emitter-coupled pair and the emitter follower. A circuit means provides a feedback signal coupled to the gates of the PMOS transistors for dynamically controlling the load resistance presented to said emitter coupled pair.
    Type: Grant
    Filed: April 30, 1991
    Date of Patent: June 23, 1992
    Assignee: MicroUnity Systems Engineering, Inc.
    Inventors: James A. Matthews, Geert Rosseel
  • Patent number: 5112761
    Abstract: A method for forming a BICMOS integrated circuit having MOS field-effect devices and bipolar junction transistors formed in a silicon substrate is disclosed. The process comprises the steps of first defining separate active areas in a substrate for each of the transistors. Next, a gate dielectric layer is formed over the surface of the wafer. Above the gate dielectric, a first layer of polysilicon is deposited. This first layer of polysilicon is then selectively etched to form a plurality of first polysilicon members each of which is equally-spaced apart from one another. The polysilicon members comprise the gates of the MOS transistors and the extrinsic base contacts of the NPN transistors. After the first polysilicon members have been defined, the base regions of the NPN transistors are formed. After insulating the first polysilicon members, an additional layer of polysilicon is deposited over the substrate to replanarize the entire wafer surface.
    Type: Grant
    Filed: January 10, 1990
    Date of Patent: May 12, 1992
    Assignee: MicroUnity Systems Engineering
    Inventor: James A. Matthews
  • Patent number: 5108945
    Abstract: A process for faricating polysilicon resistors and polysilicon interconnects coupled to MOS field-effect devices in a silicon substrate includes the steps of depositing and etching a first polysilicon layer to form the gates of the MOS devices; then depositing a second layer of polysilicon between the gates. The second polysilicon layer is then etched so that its upper surface is substantially coplanar with the gates. Contact openings are then defined to the source, drain and gate members of the devices through an insulative layer formed over the first and second polysilicon layers. Next, a metal layer is deposited to fill the openings and is patterned to define electrical contacts to the devices. The patterning step also defines the interconnect lines in the metal layer. A third polysilicon layer is then deposited and patterned to define the polysilicon resistors and interconnects.
    Type: Grant
    Filed: January 28, 1991
    Date of Patent: April 28, 1992
    Assignee: MicroUnity Systems Engineering, Inc.
    Inventor: James A. Matthews
  • Patent number: 5107460
    Abstract: An optical modulator utilizing a magnetic semiconductor device, whose operation is based on the Hall effect, includes a magnetic material formed on a semiconductor substrate. When an incoming beam of light having a dominant polarization direction is directed onto the magnetic material it becomes modulated. The result is an outgoing beam of light which has a rotated plane of polarization when compared to the dominant polarization direction. The direction of the rotated plane of polarization is indicative of the information stored in the magnetic material. The modulator of the present invention further includes a means for writing the information to the magnetic material and a semiconductor sensor means for electrically verifying the contents of the magnetic material.
    Type: Grant
    Filed: June 11, 1990
    Date of Patent: April 21, 1992
    Assignee: MicroUnity Systems Engineering, Inc.
    Inventor: James A. Matthews
  • Patent number: 5075247
    Abstract: A non-volatile, static magnetic memory device, whose operation is based on the Hall effect, is disclosed. The device includes a magnetic patch which stores data in the form of a magnetic field, a semiconductor Hall bar and a pair of integrally-formed bipolar transistors used for amplifying and buffering the Hall voltage produced along the Hall bar. Current is forced to flow down the length of the Hall bar causing a Hall voltage to be developed in a direction transverse to the direction of both the magnetic field and the current. The bases of the bipolar transistors are ohmically coupled to the Hall bar to sense the Hall voltage--the polarity of which is representative of the stored information. A system of current carrying conductors is employed for writing data to individual magnetic patches.
    Type: Grant
    Filed: January 11, 1991
    Date of Patent: December 24, 1991
    Assignee: MicroUnity Systems Engineering, Inc.
    Inventor: James A. Matthews
  • Patent number: 5068826
    Abstract: A non-volatile, static magnetic memory device, whose operation is based on the Hall effect, is disclosed. The device includes a magnetic patch which stores data in the form of a magnetic field, a semiconductor Hall bar and a pair of integrally-formed bipolar transistors used for amplifying and buffering the Hall voltage produced along the Hall bar. Current is forced to flow down the length of the Hall bar causing a Hall voltage to be developed in a direction transverse to the direction of both the magnetic field and the current. The bases of the bipolar transistors are ohmically coupled to the Hall bar to sense the Hall voltage--the polarity of which is representative of the stored information. A system of current carrying conductors is employed for writing data to individual magnetic patches.
    Type: Grant
    Filed: January 11, 1991
    Date of Patent: November 26, 1991
    Assignee: MicroUnity Systems Engineering
    Inventor: James A. Matthews