Abstract: The luminance of a laser diode is a function of laser diode drive current. The luminance is also a function of other factors, such as age and temperature. A laser projection device includes laser diodes to generate light in response to a commanded luminance, and also includes photodiodes to provide a measured luminance. The commanded luminance and measured luminance are compared, and drive currents for the laser diodes are adjusted to compensate for changes in laser diode characteristics.
Abstract: Briefly, in accordance with one or more embodiments, a display is powered on to display a projected image, and the operation of one or more display elements are ramped up until a stabilized state is reached. During said ramping up, a light source of the display is powered display at less than full power until the stabilized state is reached. While the light source is operating at less than full power, a splash screen may be displayed. After the stabilized state is reached, the light source can then be operated at or near full power. By providing a light output that is less than full power during ramp up, the display does not need to wait until the stabilized state is reached before the light source is powered on. As a result, the projector provides an output earlier in time to cue to the user that the projector is operating.
Abstract: An apparatus determines a cursor position in an illumination field of a projector. An obstruction is detected in the illumination field. The cursor position is determined as the point on the obstruction furthest from where the obstruction crosses a border of the illumination field. A distance to the point on the obstruction is determined and compared to a distance to a point not on the obstruction. Gestures are recognized as a function of movement of the obstruction and the determined distances.
Type:
Application
Filed:
April 5, 2011
Publication date:
July 28, 2011
Applicant:
MICROVISION, INC.
Inventors:
Margaret K. Brown, George Thomas Valliath
Abstract: Briefly, in accordance with one or more embodiments, a MEMS based scanning platform is arranged to have increased efficiency by driving a first frame of the scanning platform directly by applying a drive voltage to a set of comb fingers disposed on the first frame to cause the first frame to oscillate via torsional rotation of a first flexure and by driving a second frame of the scanning platform indirectly via mechanical coupling of the second frame with the first frame via a second flexure, wherein damping losses and work capacity are such that the operation of the scanning mirror is more efficient than if the set of comb fingers were disposed on the second frame and directly driven by the drive voltage. The scanning platform may comprise a 1D scanner, a 2D scanner, or a multiple-dimensional scanner.
Abstract: An integrated photonics module includes at least one light source and a MEMS scanner coupled to and held in alignment by an optical frame configured for mounting to a host system. According to some embodiments, the integrated photonics module may include a plurality of light sources and a beam combiner coupled to the optical frame. According to some embodiments, the integrated photonics module includes a selective fold mirror configured to direct at least a portion of emitted light toward the MEMS scanner in a normal direction and pass scanned light through to a field of view. The selective fold mirror may use beam polarization to select beam passing and reflection. The integrated photonics module may include a beam rotator such as a quarter-wave plate to convert the polarization of the emitted light to a different polarization adapted for passage through the fold mirror. The integrated photonics module may include one or more light detectors.
Type:
Grant
Filed:
October 1, 2010
Date of Patent:
July 26, 2011
Assignee:
Microvision, Inc.
Inventors:
Randall B. Sprague, Joshua O. Miller, Margaret K. Brown, Mark O. Freeman, Maarten Niesten, Bin Xue, Christopher A. Wiklof
Abstract: A lightweight, compact image projection module, especially for mounting in a housing having a light-transmissive window, is operative for causing selected pixels in a raster pattern of scan lines to be illuminated to produce an image of high resolution in color. The direction of scanning of the scan lines is switched between alternate frames, and the resulting image is the superposition of successive frames integrated for viewing by the human eye.
Abstract: Briefly, in accordance with one or more embodiments, a closed loop feedback system for electronic beam alignment in a scanned beam display comprises a light source to emit one or more light beams, a controller to provide a control signal to drive the light source, a scanning platform to receive the one or more light beams and scan the light beams in a scanning pattern to project an image, and an alignment detector to provide a feedback signal indicative of beam position information of the light beams in the far field to the controller. An optic may be disposed in the beam path to magnify and/or to transform beam position information into the far field for the one or more alignment detectors. The controller adjusts the control signal in response to the feedback signal received from the alignment detector to maintain alignment of the light beams in a far field.
Abstract: In a portable housing, a digital photographing apparatus (100) may include an image capturing unit (100) operable for capturing at least one digital image (172) and a memory (158, 161) for storing the at least one digital image. Digital photographing apparatus may also include a laser scanning projector (150) operable to optically raster scan the at least one digital image on a remote surface (170) one pixel at a time. The laser scanning projector is operable without focusing adjustment to scan the at least one digital image in focus on the remote surface independent of a distance (174) between the digital photographing apparatus and the remote surface. A controller (154) is operable to read the at least one digital image from the memory and operate the laser scanning projector to project the at least one digital image on the remote surface.
Abstract: A method of raster scanning a sample on a continuously moving stage for charged-particle beam imaging said sample is disclosed. The method includes line scanning a charged-particle beam across a surface of the sample repeatedly to form on the surface at least one 2-dimensional line array composed of scan lines lying adjacent to each other. When each line scan is to be performed, the charged-particle beam is shifted, along the stage-moving direction, by an extra predefined distance at least equal to a distance the stage has traveled during a time period from the beginning of the first line scan of the first formed line array to the beginning of the current line scan (to be performed) of the current line array (to be formed).
Abstract: According to an embodiment, an image capture apparatus comprises a light emitter, a beam scanner aligned to receive emitted light and operable to scan the light in a two-dimensional pattern, imaging optics aligned to receive the scanned two-dimensional pattern and image the pattern onto an object, and to collect light scattered from the object, a detector to receive scattered light from the imaging optics, an electronic controller c operable to receive an electrical signal from the detector corresponding to the received scattered light, and an actuator operable to modify the relative alignment between the beam scanner and the imaging optics to change an imaged location on the object. According to an embodiment, a method for capturing an image comprises scanning a beam of light through imaging optics onto a location on a surface, detecting light scattered by the surface, and steering the beam scanner relative to the imaging optics to change the trajectory of the scanned pattern.
Abstract: A scanning assembly (400) for use in a scanning display includes a reflective scanning surface, such as a scanning mirror (412). The reflected scanning surface can be mounted on a scan plate (409). The scanning assembly (400) is configured to pivot about a first axis (403) and a second axis (404) to form an image. To correct parallelogram distortion, the first axis (403) and second axis (404) are non-orthogonal relative to each other. Torsion arms (407,408) facilitating rotation of the scanning mirror (412) along one axis (403) can be oriented non-orthogonally relative to other torsion arms (413,414) by an amount sufficient to correct parallelogram distortion.
Abstract: An integrated photonics module includes at least one light source and a MEMS scanner coupled to and held in alignment by an optical frame configured for mounting to a host system. According to some embodiments, the integrated photonics module may include a plurality of light sources and a beam combiner coupled to the optical frame. According to some embodiments, the integrated photonics module includes a selective fold mirror configured to direct at least a portion of emitted light toward the MEMS scanner in a normal direction and pass scanned light through to a field of view. The selective fold mirror may use beam polarization to select beam passing and reflection. The integrated photonics module may include a beam rotator such as a quarter-wave plate to convert the polarization of the emitted light to a different polarization adapted for passage through the fold mirror. The integrated photonics module may include one or more light detectors.
Type:
Grant
Filed:
October 1, 2010
Date of Patent:
July 12, 2011
Assignee:
Microvision, Inc.
Inventors:
Randall B. Sprague, Joshua O. Miller, Margaret K. Brown, Mark O. Freeman, Maarten Niesten, Bin Xue, Christopher A. Wiklof
Abstract: An apparatus determines a cursor position in an illumination field of a projector. An obstruction is detected in the illumination field. The cursor position is determined as the point on the obstruction furthest from where the obstruction crosses a border of the illumination field.
Abstract: A lightweight, compact image projection module, especially for mounting in a housing having a light-transmissive window, is operative for sweeping a composite laser beam as a pattern of linear scan lines on a planar projection surface and for causing selected pixels arranged along each linear scan line to be illuminated to produce an image of high quality and in color.
Type:
Application
Filed:
March 4, 2011
Publication date:
July 7, 2011
Applicant:
MICROVISION, INC.
Inventors:
Chinh Tan, Frederick F. Wood, Miklos Stern
Abstract: An image producing system (1400) delivers images (1414) having reduced speckle by employing one or more drive circuits (1404, 1405, 1406) that deliver both a direct current drive signal (205) and an alternating current drive signal (405) to one or more lasers (1401, 1402, 1403). Specifically, an alternating current drive circuit (403) is used in conjunction with a direct current drive circuit (203) to modulate a drive signal. The modulation can be at a frequency of between 400 MHz and 600 MHz. When lasers, such as the red laser (1401) or the blue laser (1403) of a multi-laser system are modulated in such a fashion, their emitted spectral widths (407) greatly expand, thereby reducing speckle in projected images (1414).
Type:
Grant
Filed:
October 21, 2008
Date of Patent:
July 5, 2011
Assignee:
Microvision, Inc.
Inventors:
Witold R Teller, Alban N Lescure, Mark O. Freeman
Abstract: A method for regulating sample surface charge has been proposed in this invention. The processes of applying a charged particle beam to a first area and applying a flood energized beam gun with gaseous molecules to a second area are executed in the method when the sample is in both continuous and Leap & Scan movements. The second area is located at a predetermined distance from the first area behind or ahead of the first area being scanned with respect to the movement of the sample. Thus, the surface of the sample may be regulated.
Abstract: A optical apparatus (201) for use in an laser imaging system (200) is provided. The optical apparatus (201) includes one or more optical elements (215) that are configured to create an intermediate image plane (217) in the laser imaging system (200). A diffractive optical element (216) is then disposed at the intermediate image plane (217) to reduce speckle. The diffractive optical element (216) includes a periodically repeating phase mask (218) that can be configured in accordance with steps, vortex functions, Hermite-Gaussian functions, and so forth. Smooth grey-level phase transitional surface (337) can be placed between elements (333,334) to improve brightness and image quality. The periodically repeating phase mask (218) makes manufacture simple by reducing alignment sensitivity, and can be used to make applicable safety standards easier to meet as well.
Type:
Application
Filed:
December 21, 2009
Publication date:
June 23, 2011
Applicant:
MICROVISION, INC.
Inventors:
Markus Duelli, Alban N. Lescure, Mark O. Freeman, Christian Dean DeJong, Joshua M. Hudman
Abstract: An optical deflector includes multiple voltage-dependent refractive boundaries. Light passes through the refractive boundaries and accumulates a deflection angle. An electrode placed to apply a voltage to the boundaries may be non-uniform to modulate a wavefront as it passes. A scanning laser projector includes the optical deflector to modulate laser light.
Abstract: The present invention relates to a multi-axis magnetic lens for a charged particle beam system. The apparatus eliminates the undesired non-axisymmetric transverse magnetic field components from the magnetic field generated by a common excitation coil and leaves the desired axisymmetric field for focusing each particle beam employed within the system.
Type:
Application
Filed:
December 11, 2009
Publication date:
June 16, 2011
Applicant:
HERMES MICROVISION, INC.
Inventors:
ZHONGWEI CHEN, WEIMING REN, KENICHI KANAI, XUEDONG LIU
Abstract: A guiding-substrate display may include an angle-mapped display engine to generate a modulated photonic output having angle-mapped rays responsive to an electrical signal without the use of an ocular lens. An input optical element receives the modulated photonic output of the angle-mapped display engine and cooperates with the angle-mapped display engine to launch modulated photonic output having selected polarization. An image relay slab receives the modulated photonic output from the input optical element and guides the modulated photonic output from a proximal to a distal location. An output optical element to receives the modulated photonic output from the image relay slab and launches the modulated photonic output having angle-mapped rays toward a viewing region.