Patents Assigned to MiniMed
  • Patent number: 9603561
    Abstract: Methods and systems for sensor calibration and sensor glucose (SG) fusion are used advantageously to improve the accuracy and reliability of orthogonally redundant glucose sensor devices, which may include optical and electrochemical glucose sensors. Calibration for both sensors may be achieved via fixed-offset and/or dynamic regression methodologies, depending, e.g., on sensor stability and Isig-Ratio pair correlation. For SG fusion, respective integrity checks may be performed for SG values from the optical and electrochemical sensors, and the SG values calibrated if the integrity checks are passed. Integrity checks may include checking for sensitivity loss, noise, and drift. If the integrity checks are failed, in-line sensor mapping between the electrochemical and optical sensors may be performed prior to calibration.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: March 28, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Andrea Varsavsky, Xiaolong Li, Mike C. Liu, Yuxiang Zhong, Ning Yang
  • Patent number: 9598210
    Abstract: Various embodiments of the present invention are directed to equalizing pressure in a reservoir containing fluidic media, possibly due to imperfect installation of the reservoir or an external influence such as an altitude or a temperature change. In various embodiments, fluidic media may be expelled from the reservoir through a needle and contained in an interior volume of a pierceable member before the needle pierces the pierceable member to establish a flow path to a user. In other embodiments, fluidic media may be expelled through a port of the reservoir into a chamber or to the outside environment. In further embodiments, fluidic media may be expelled through a channel in a plunger head and out a passage in the reservoir when the channel and passage are aligned. In other embodiments, fluidic media may be expelled through a valve, and the valve may be pierceable by a needle to establish a flow path to the user.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: March 21, 2017
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Eric M. Lorenzen, Edgardo Halili
  • Patent number: 9597461
    Abstract: An injection apparatus for making an injection at a predetermined depth in skin comprises: a skin positioning member, an injection needle (610), and means guiding the injection needle for movement from a parking position above the skin beside said skin positioning member to slide beneath said skin positioning member to an injection position; wherein: the tip (620) of the injection needle is closer to the longitudinal axis of the shaft portion (650) than is the outside of the shaft portion (650) and/or the length of the lumen opening (625) of the needle is in a range from 5 to 15 times the diameter of the shaft (650) of the needle. An injection needle wherein the length of the lumen opening (625) of the needle is in a range from 5 to 15 times the diameter of the shaft (650) of the needle.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: March 21, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventor: Søren Aasmul
  • Patent number: 9592335
    Abstract: An insulin pump data acquisition device including: an insulin pump casing having an interior volume; an environmental sensor operable to generate environmental data in response to environmental conditions; memory operably connected to the environmental sensor, the memory being operable to store the environmental data; a controller operably connected to the environmental sensor and the memory, the controller being operable to control reading of the environmental data from the environmental sensor and writing of the environmental data to the memory; and a battery operably connected to power the environmental sensor, the memory, and the controller; wherein the environmental sensor, the memory, the controller, and the battery are disposed within the interior volume.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: March 14, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Darren Y. K. Yap, Solomon Li, Alexander E. Holmes, William Jackson Dannemann
  • Publication number: 20170055892
    Abstract: The invention disclosed herein includes sensors having three dimensional configurations that allow expansive “360°” sensing (i.e. sensing analyte from multiple directions) in the environments in which such sensors are disposed. Embodiments of the invention provide analyte sensors having foldable substrates adapted to produce optimized configurations of electrode elements as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: September 21, 2016
    Publication date: March 2, 2017
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Megan E. Little, Katherine T. Wolfe, Raghavendhar Gautham, Bradley Chi Liang, Rajiv Shah
  • Patent number: 9579066
    Abstract: Disclosed are a system and method for determining a metric and/or indicator of a reliability of a blood glucose sensor in providing glucose measurements. In one aspect, the metric and/or indicator may be computed based, at least in part, on an observed trend associated with signals generated by the blood glucose sensor.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: February 28, 2017
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rebecca K. Gottlieb, Ying Luo, Raghavendhar Gautham, Bradley Liang, Anirban Roy, Kenneth W. Cooper, Rajiv Shah, Barry Keenan
  • Patent number: 9579454
    Abstract: A medical device system includes at least one controllable patient-worn or patient-carried medical device, and a plurality of controller devices that are capable of independently controlling features or functions of the patient medical device. Control commands and other data is wirelessly communicated among the patient medical device and the multiple controller devices. A number of techniques, protocols, and other measures are provided to coordinate wireless communication between the various devices in a medical device system. These control command coordination processes address situations where conflicting, redundant, or concurrent control commands might be independently issued by the multiple controller devices.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: February 28, 2017
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Sheldon B. Moberg, Ian B. Hanson
  • Patent number: 9579452
    Abstract: A method and apparatus for a connection interface between a reservoir or syringe, infusion set tubing, and an infusion pump is provided. A base is provided which is adapted to receive a reservoir. The base has a base engagement member, such as a detent, projecting therefrom. A cap is provided which is adapted to receive the base. The cap includes a first cap engagement member, such as a detent opening, which is adapted to removably engage the base detent. The cap further includes a second cap detent opening which is adapted to removably engage the base detent. A piercing member, such as a needle, is disposed in the interior of the cap in such a manner that the needle is separated from the reservoir septum when the base detent is in the first cap detent opening, and the needle pierces the reservoir septum when the base detent is in the second cap detent opening.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: February 28, 2017
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Randy W. Adair, Sheldon B. Moberg, Chalirmkiert Srisathapat
  • Patent number: 9555190
    Abstract: A method of seating a fluid reservoir in a housing of a fluid infusion device is presented here. The method is performed prior to establishing an outgoing fluid flow path from the fluid reservoir. The method begins by detecting insertion of the fluid reservoir into the housing of the fluid infusion device. In response to detecting the insertion, the method determines whether the fluid reservoir is in need of depressurization. When the fluid reservoir is in need of depressurization, the drive motor assembly of the fluid infusion device is rewound to depressurize the fluid reservoir. After depressurizing the fluid reservoir, an equalization state for the fluid reservoir is achieved. After achieving the equilibrium state, the drive motor assembly is advanced to obtain an initial seated state for the fluid reservoir.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: January 31, 2017
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Juan M. Alderete, Jr., Salman Monirabbasi
  • Patent number: 9549698
    Abstract: A blood glucose sensing system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes stabilization circuitry. The stabilization circuitry causes a first voltage to be applied to one of the electrodes for a first timeframe and causes a second voltage to be applied to one of the electrodes for a second timeframe. The stabilization circuitry repeats the application of the first voltage and the second voltage to continue the anodic-cathodic cycle. The sensor electronics device may include a power supply, a regulator, and a voltage application device, where the voltage application device receives a regulated voltage from the regulator, applies a first voltage to an electrode for the first timeframe, and applies a second voltage to an electrode for the second timeframe.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: January 24, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Bahar Reghabi, James L. Henke, Wayne A. Morgan, Gopikrishnan Soundararajan, David Y. Choy, Peter Schultz
  • Patent number: 9545474
    Abstract: A delivery system for delivering fluidic media to a user having a second housing portion configured to be selectively operatively engaged with and disengaged from a first housing portion, the first housing portion and the second housing portion configured to be slidable relative to each other to operatively engage each other; and a fluid connector supported by one the housing portions in a position to engage a reservoir supported by an other of the housing portions in a case where the first housing portion and the second housing portion are slid relative to each other to operatively engage each other.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: January 17, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ian B. Hanson, Paul F. Bente, IV
  • Patent number: 9545477
    Abstract: An on-body injector and method of use including an on-body injector for use with an injection device. The on-body injector includes a bolus reservoir; a bolus injection needle in fluid communication with the bolus reservoir, the bolus injection needle having a bolus injection needle tip aligned with the injection port, the bolus injection needle being slideably biased away from the injection port to define a gap between the bolus injection needle tip and the injection port; and a button operably connected to the bolus injection needle to slide the bolus injection needle along the injection axis. The button is operable to advance the bolus injection needle tip to close the gap and advance the bolus injection needle tip into the injection port. The button is further operable to advance a plunger through the bolus reservoir to deliver a predetermined bolus volume to the patient through the injection flow path.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: January 17, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Colin A. Chong, Randal Schulhauser, Tyler S. Stevenson, Rafael Bikovsky
  • Patent number: 9541519
    Abstract: Embodiments of the invention provide electrochemical analyte sensors having elements designed to modulate their electrochemical reactions as well as methods for making and using such sensors.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: January 10, 2017
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Rajiv Shah, Rebecca K. Gottlieb, Gopikrishnan Soundararajan, James D. Holker
  • Patent number: 9539386
    Abstract: An on-body injector and method of use including an on-body injector for use with an injection device. The on-body injector includes a bolus reservoir; a bolus injection needle in fluid communication with the bolus reservoir, the bolus injection needle having a bolus injection needle tip aligned with the injection port, the bolus injection needle being slideably biased away from the injection port to define a gap between the bolus injection needle tip and the injection port; and a button operably connected to the bolus injection needle to slide the bolus injection needle along the injection axis. The button is operable to advance the bolus injection needle tip to close the gap and advance the bolus injection needle tip into the injection port. The button is further operable to advance a plunger through the bolus reservoir to deliver a predetermined bolus volume to the patient through the injection flow path.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: January 10, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Mohsen Askarinya, Richard L. Brown, Colin A. Chong, Patrick W. Kinzie, Randal Schulhauser, Jeff M. Cherry, Tyler S. Stevenson
  • Patent number: 9533132
    Abstract: Disclosed herein is a fluid infusion device of the type that delivers medication fluid to the body of a patient. The device includes or cooperates with a fluid reservoir, and the device has a sealing assembly to receive and form a fluid seal with the fluid reservoir. A retractable sealing element surrounding a hollow fluid delivery needle may be used to seal a port of the fluid reservoir. The port may include a pressure vent that is sealed by the retractable sealing element. In one variation, the reservoir includes a moving valve sleeve that holds a septum. The septum moves to allow the reservoir to vent, and to form a seal with the port when the needle pierces the septum. In another variation, the device includes a needleless sealing assembly. In yet other variations, the device uses a needled fluid reservoir.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: January 3, 2017
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Edgardo C. Halili, Eric M. Lorenzen, Matthew William Yavorsky
  • Patent number: 9533096
    Abstract: An implantable infusion pump possesses operational functionality that is, at least in part, controlled by software operating in two processor ICs which are configured to perform some different and some duplicate functions. The pump exchanges messages with an external device via telemetry. Each processor controls a different part of the drug infusion mechanism such that both processors must agree on the appropriateness of drug delivery for infusion to occur. Delivery accumulators are incremented and decremented with delivery requests and with deliveries made. When accumulated amounts reach or exceed, quantized deliverable amounts, infusion is made to occur. The accumulators are capable of being incremented by two or more independent types of delivery requests. Operational modes of the infusion device are changed automatically in view of various system errors that are trapped, various system alarm conditions that are detected, and when excess periods of time lapse between pump and external device interactions.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: January 3, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ronald J. Lebel, Timothy J. Starkweather, Philip T. Weiss
  • Patent number: 9526834
    Abstract: Processor-implemented methods of controlling an insulin infusion device for a user are provided here. A first method obtains a current insulin on board (IOB) value that estimates active insulin in the user, and compensates a calculated insulin infusion rate in response to the obtained IOB value. A second method supervises the operation of a glucose sensor by obtaining and processing insulin-delivered data and glucose sensor data for the user. An alert is generated if the second method determines that a current glucose sensor value has deviated from a predicted sensor glucose value by at least a threshold amount.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: December 27, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Desmond Barry Keenan, John J. Mastrototaro, Benyamin Grosman, Neha J. Parikh, Anirban Roy
  • Patent number: 9522225
    Abstract: Various embodiments of the present invention are directed to patches for medical devices. In various embodiments, an adhesive patch of a medical device may have selective areas with adhesive material of varying adhesion strengths. In other embodiments, an adhesive patch of a medical device may include adhesive material that may be activated by a catalyst to increase or decrease the adhesion strength of the adhesive material. In further embodiments, a medical device may include a pierceable membrane containing an agent, the pierceable membrane positioned to be pierced by a needle and to cause some of the agent to be carried to the user-patient.
    Type: Grant
    Filed: March 25, 2009
    Date of Patent: December 20, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Colin A. Chong, Christopher G. Griffin
  • Patent number: 9522223
    Abstract: A housing for a fluid infusion device is provided. The housing can include a first housing component including a first engagement system. The first housing component can define a first compartment and a second compartment. The first engagement system can be coupled to the second compartment and movable relative to the second compartment. The housing can also include a second housing component coupled to the first compartment of the first housing component. The second housing component can include a second engagement system. The second engagement system can be movable relative to the second housing component.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: December 20, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventor: Matthew William Yavorsky
  • Patent number: 9517303
    Abstract: Apparatus are provided for infusion devices and related control systems and methods. In one embodiment, an infusion device includes a voided portion adapted to receive a shaft portion that includes a shaft coupled to a plunger of a reservoir. The shaft portion includes a detectable feature, and the infusion device includes a sensing arrangement proximate the voided portion to sense the detectable feature. In some embodiments, a control module is coupled to the sensing arrangement to determine a remaining amount of fluid in the reservoir based at least in part on the sensed position of the detectable feature. In other embodiments, the control module identifies an anomalous condition based at least in part on the sensed position of the detectable feature.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: December 13, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Afshin Bazargan, Pablo Vazquez, EJMar Fonacier, Andrew E. Weaver