Patents Assigned to MiniMed
  • Patent number: 9360447
    Abstract: A sensor system includes a sensor and a sensor electronics device. The sensor includes a plurality of electrodes. The sensor electronics device includes a connection detection device, a power source, and a delay circuit. The connection detection device determines if the sensor electronics device is connected to the sensor and transmits a connection signal. The delay circuit receives the connection signal, waits a preset hydration time, and couples the regulated voltage from the power source to an electrode in the sensor after the preset hydration time has elapsed. Alternatively, the sensor electronics device may include an electrical detection circuit and a microcontroller. The electrical detection circuit determines if the plurality of electrodes are hydrated and generates an interrupt if the electrodes are hydrated. A microcontroller receives the interrupt and transmits a signal representative of a voltage to an electrode of the plurality of electrodes.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: June 7, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Wayne A. Morgan, David Y. Choy, James L. Henke, Bahar Reghabi, Gopikrishnan Soundararajan, Peter Schultz, Udo Hoss
  • Patent number: 9357958
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: June 7, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ning Yang, Raghavendhar Gautham, Bradley C. Liang, Rajiv Shah
  • Publication number: 20160144104
    Abstract: Systems and methods for a fluid reservoir for use with a fluid infusion device which is automatically filled are provided. A set connector for use with a fluid reservoir of a fluid infusion device includes a body for defining a fluid flow path out of the fluid reservoir. The body includes at least one locking tab that cooperates with a portion of the fluid infusion device to removably couple the body to a proximal end of the fluid reservoir. The body is movable between a first position, in which the fluid flow path is obstructed, and a second position, in which the fluid flow path is open.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 26, 2016
    Applicant: MEDTRONIC MINIMED, INC.
    Inventor: Jacob E. Pananen
  • Patent number: 9344024
    Abstract: Apparatus are provided for motor control systems and related medical devices. In one embodiment, a control system includes a motor having a rotor, a modulation module coupled to the motor, and a control module coupled to the modulation module. The modulation module generates a modulated voltage that is applied to the motor and rotates the rotor to deliver fluid via a fluid path. The control module adjusts a duty cycle of the modulated voltage to achieve a commanded rotation of the rotor and detects an occlusion condition in the fluid path based on the duty cycle.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: May 17, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventor: Jacques L. Favreau
  • Patent number: 9339639
    Abstract: Disclosed herein is a fluid infusion device of the type that delivers medication fluid to the body of a patient. The device includes or cooperates with a fluid reservoir, and the device has a sealing assembly to receive and form a fluid seal with the fluid reservoir. A retractable sealing element surrounding a hollow fluid delivery needle may be used to seal a port of the fluid reservoir. The port may include a pressure vent that is sealed by the retractable sealing element. In one variation, the reservoir includes a moving valve sleeve that holds a septum. The septum moves to allow the reservoir to vent, and to form a seal with the port when the needle pierces the septum. In another variation, the device includes a needleless sealing assembly. In yet other variations, the device uses a needled fluid reservoir.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: May 17, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Edgardo C. Halili, Eric M. Lorenzen, Matthew William Yavorsky
  • Patent number: 9333294
    Abstract: An insertion device, generally used with an infusion set, including a needle being adapted for puncturing at one end and including at the opposite end a hub. The hub includes a handle part and a guard part that are capable of securing the needle through the use of locks. Locking structures are used to secure the insertion device in a position where the needle is covered in a locked position, avoiding unintended contact with the needle.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: May 10, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Sheldon B. Moberg, Susie E. Maule, Mark D. Holt, Paul S. Cheney, II, Arin N. Holecek, Christopher G. Griffin, Julian D. Kavazov
  • Patent number: 9333292
    Abstract: A fluid infusion device, for delivery of a medication fluid to the body of a user, includes a housing, a fluid reservoir for the medication fluid, a dosing mechanism, an infusion component, and a mechanical actuator. The fluid reservoir and the dosing mechanism are located in the housing, and the dosing mechanism is coupled to receive the medication fluid from the fluid reservoir. The dosing mechanism has an adjustable fluid chamber that defines a variable dosage volume. The infusion component is coupled to the dosing mechanism to receive the medication fluid from the adjustable fluid chamber. The mechanical actuator is coupled to the dosing mechanism such that operation of the mechanical actuator causes the medication fluid to be expelled from the adjustable fluid chamber to the infusion component.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: May 10, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventor: Colin A. Chong
  • Patent number: 9338819
    Abstract: A variable data usage personal medical system including a self-care device attached to a patient, and operable to generate self-care device data and to transmit the self-care device data at a fixed interval; a cellular communication device operable to receive and store the transmitted self-care device data, to register a count at an interval counter for each of the fixed intervals in which the transmitted self-care device data is received, to generate a data cellular packet from overhead plus the stored self-care device data when the interval counter equals a fixed interval index, and to transmit the data packet; and a cloud infrastructure operably connected to the cellular communication device over a cellular network, and operable to receive, process, and store the transmitted data packet. The cloud infrastructure is operable to transmit a value for the fixed interval index to the cellular communication device for storage.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: May 10, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Fan Meng, Gary A. Cohen, Eileen H. Dempster, George W. Patterson, Cary D. Talbot, Mark Sebastian Verghese, Maral Gharib
  • Patent number: 9330237
    Abstract: A method of diabetes analysis includes receiving a plurality of glucose level readings for a user. A common event occurrence in at least two of the glucose level readings is determined. The at least two glucose level readings from the common event occurrence onwards in time for a time period is analyzed. A glucose level pattern formed by the at least two glucose level readings having a similar shape is determined. At least one anomalous glucose level reading having the similar shape and not conforming to the glucose level pattern is analyzed. The at least one anomalous glucose level reading is adapted to the pattern to form an adapted glucose level pattern. An insulin dosage for the time period beginning at the common event occurrence is calculated based on the adapted glucose level pattern.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: May 3, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Gary Cohen, Kristen Getschmann, Vidya Raman, Kenneth Ko, Biju Nair, Cary Talbot, Tamir Nitzan, Paul H. Kovelman, Bee Hess
  • Patent number: 9327073
    Abstract: An improved pump, reservoir and reservoir piston are provided for controlled delivery of fluids. A motor is operably coupled to a drive member, such as a drive screw, which is adapted to advance a plunger slide in response to operation of the motor. The plunger slide is removably coupled to the piston. A method, system, and an article of manufacture for automatically detecting an occlusion in a medication infusion pump is provided. The electrical current to an infusion pump is measured. Based on a series of measurements of one or more variables, the infusion pump detects whether there is an occlusion in the system.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: May 3, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Sheldon B. Moberg, Ian B. Hanson, Cary D. Talbot
  • Patent number: 9326708
    Abstract: A first sensor may be configured to measure a sensed amount of a physiological parameter and to generate a first signal based on the sensed amount of the physiological parameter measured by the first sensor. A second sensor may be configured to measure a temperature and to generate a second signal based on the temperate measured by the second sensor. A housing may have heat-generating electronics including a processor that may be configured to determine an overall amount of the physiological parameter based on the first signal generated from the first sensor and the second signal generated from the second sensor. The second sensor may be thermally insulated from the heat-generating electronics.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: May 3, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ian B. Hanson, Dore Mark, Sean Daley, Sheldon B. Moberg, Susie E. Buckman, Paul F. Bente, IV
  • Patent number: 9320470
    Abstract: Disclosed are a method and/or system for filtering sensor measurements. In one particular implementation, a sensor signal may be processed concurrently in a plurality of signal-filter paths. A particular signal-filter path may be selected to provide an output signal for obtaining a measurement based, at least in part, on a measurement of noise associated with the sensor signal.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: April 26, 2016
    Assignee: Medtronic Minimed, Inc.
    Inventors: Desmond Barry Keenan, John J. Mastrototaro
  • Patent number: 9320471
    Abstract: An infusion system is for infusing a fluid into the body of a patient. The infusion system includes at least one sensor for monitoring blood glucose concentration of the patient and an infusion device for delivering fluid to the patient. The sensor produces at least one sensor signal input. The infusion device uses the at least one sensor signal input and a derivative predicted algorithm to determine future blood glucose levels. The infusion device delivers fluid to the patient when future blood glucose levels are in a patient's target range. The infusion device is capable of suspending and resuming fluid delivery based on future blood glucose levels and a patient's low shutoff threshold. The infusion device suspends fluid delivery when future blood glucose levels falls below the low shutoff threshold. The infusion device resumes fluid delivery when a future blood glucose level is above the low shutoff threshold.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: April 26, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Andrew C. Hayes, John J. Mastrototaro, Sheldon B. Moberg, John C. Mueller, Jr., H. Bud Clark, Mike Charles Vallet Tolle, Gary L. Williams, Bihong Wu, Garry M. Steil
  • Patent number: 9307936
    Abstract: Disclosed are methods, apparatuses, etc. for providing a visual expression of the performance of one or more blood glucose sensors. In one particular example, a relative comparison of a rate of change sensor blood glucose and a rate of change in reference blood glucose may be expressed in a polar plot or graph. The polar plot or graph may then be generated onto a visual medium.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: April 12, 2016
    Assignee: Medtronic Minimed, Inc.
    Inventors: Rebecca K. Gottlieb, Ying Luo, Ning Yang, James Geoffrey Chase
  • Patent number: 9308321
    Abstract: Apparatus are provided for infusion devices and related operating methods. An exemplary infusion device includes a housing to receive a shaft coupled to a plunger disposed in a reservoir and a gear assembly including a first gear to engage the shaft, wherein the first gear exhibits rotational freedom in a direction opposite a delivery direction. One exemplary method of operating the infusion device comprises identifying a reset condition and in response to the reset condition, operating a motor having a rotor coupled to the gear assembly to provide the rotational freedom for the first gear.
    Type: Grant
    Filed: February 18, 2013
    Date of Patent: April 12, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Juan M. Alderete, Jr., Salman Monirabbasi
  • Patent number: 9309550
    Abstract: Embodiments of the invention provide analyte sensors having nanostructured electrodes as well as methods for making and using such sensors. In certain embodiments of the invention, the sensor includes a carbon nanotube electrode and a analyte limiting membrane that modulates the ability of a analyte to contact the carbon nanotube electrode.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: April 12, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Kenneth W. Cooper, Ratnakar Vejella, Gopikrishnan Soundararajan, Rajiv Shah
  • Patent number: 9295786
    Abstract: An introducer is provided for introducing a sensor into the body of a patient. The introducer connects to a sensor hub. When the sensor hub and introducer are connected, the introducer needle is exposed. When the sensor hub and introducer are disconnected, a needle cover and the needle move with respect to each other so that the needle cover substantially covers the needle, protecting a user from being injured by the needle.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: March 29, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rebecca K. Gottlieb, Rajiv Shah, Katherine T. Wolfe, Eric Allan Larson
  • Patent number: 9295776
    Abstract: A casing may be configured to envelop at least a portion of a plunger arm attached to a plunger head located in a reservoir. A plunger head moveable in a reservoir may have a front portion comprising a first material compatible with fluidic media in an interior volume of the reservoir. A seal member having a first end and a second end that taper to a mid-portion may be positioned between a reservoir and a plunger head. A bias member may be configured to force a plunger arm operatively connected to a plunger head against a drive member to operatively engage the plunger arm to the drive member. A plunger head moveable in a reservoir may have a first ridge, a second ridge, a seal member adjacent at least one of the ridges, and protrusions arranged around at least one of the ridges.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: March 29, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Colin A. Chong, Eric M. Lorenzen, Rafael Bikovsky, Arsen Ibranyan
  • Patent number: 9289168
    Abstract: The subject matter disclosed herein relates to systems, methods and/or devices for calibrating sensor data to be used in estimating a blood glucose concentration. A relationship between sensor measurements and reference readings may be used to estimate a relationship between sensor measurements and blood glucose concentration. Such sensor measurements may be weighted according to a decreasing function of uncertainty associated with sensor values.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: March 22, 2016
    Assignee: Medtronic Minimed, Inc.
    Inventors: Desmond Barry Keenan, John J. Mastrototaro
  • Patent number: 9283318
    Abstract: A sealing assembly for a fluid infusion device includes a base plate, a reservoir port receptacle, a flow base component, and a needle sealing element. The receptacle receives the reservoir port, and has proximal and distal ends, and a needle entry in the distal end to receive a hollow needle of a fluid reservoir. The flow base component has an inlet structure defining a fluid chamber, and a needle guide pin protruding therefrom. The end of the guide pin fits within the hollow needle. The needle sealing element has a proximal flange adjacent to the inlet structure, a distal flange opposite the proximal flange, a neck section between the flanges, and a needle opening extending through the neck section. The needle sealing element is positioned within the port receptacle such that the neck section surrounds the end section of the needle guide pin.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: March 15, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Matthew William Yavorsky, Edgardo C. Halili, Eric M. Lorenzen