Patents Assigned to MiniMed
  • Publication number: 20160067403
    Abstract: A delivery device includes a durable housing portion and a separable disposable portion that selectively engage and disengage from each other. The disposable housing portion secures to the patient and may be disposed of after it has been in use for a prescribed period. Components that normally come into contact with a patient or with infusion media are supported by the disposable housing portion for disposal after the prescribed use, while the durable housing portion supports other components such as electronics for controlling delivery of infusion media from the reservoir and a drive device and drive linkage.
    Type: Application
    Filed: October 2, 2015
    Publication date: March 10, 2016
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Sheldon B. Moberg, Ian B. Hanson, Paul S. Cheney, II
  • Patent number: 9272125
    Abstract: Disclosed herein is a fluid infusion device of the type that delivers medication fluid to the body of a patient. The device includes or cooperates with a fluid reservoir, and the device has a sealing assembly to receive and form a fluid seal with the fluid reservoir. A retractable sealing element surrounding a hollow fluid delivery needle may be used to seal a port of the fluid reservoir. The port may include a pressure vent that is sealed by the retractable sealing element. In one variation, the reservoir includes a moving valve sleeve that holds a septum. The septum moves to allow the reservoir to vent, and to form a seal with the port when the needle pierces the septum. In another variation, the device includes a needleless sealing assembly. In yet other variations, the device uses a needled fluid reservoir.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: March 1, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Edgardo C. Halili, Eric M. Lorenzen, Matthew William Yavorsky
  • Patent number: 9265884
    Abstract: An on-body injector and method of use including an on-body injector for use with an injection device. The on-body injector includes a bolus reservoir; a bolus injection needle in fluid communication with the bolus reservoir, the bolus injection needle having a bolus injection needle tip aligned with the injection port, the bolus injection needle being slideably biased away from the injection port to define a gap between the bolus injection needle tip and the injection port; and a button operably connected to the bolus injection needle to slide the bolus injection needle along the injection axis. The button is operable to advance the bolus injection needle tip to close the gap and advance the bolus injection needle tip into the injection port. The button is further operable to advance a plunger through the bolus reservoir to deliver a predetermined bolus volume to the patient through the injection flow path.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: February 23, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Colin A. Chong, Randal Schulhauser, Tyler S. Stevenson, Rafael Bikovsky
  • Patent number: 9267875
    Abstract: An accelerated life testing device and method including an accelerated life testing method for a test piece within a test chamber, the method including: establishing a first atmosphere within the test chamber; changing the first atmosphere to a second atmosphere to form a deposition layer on the test piece; changing the second atmosphere to the first atmosphere to remove the deposition layer from the test piece; and repeating the changing the first atmosphere to the second atmosphere and the changing the second atmosphere to the first atmosphere to form an oxidation layer on the test piece.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: February 23, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Darren Y. K. Yap, Alexander E. Holmes
  • Patent number: 9265890
    Abstract: Syringe pistons for a fluid syringe, and related sealing elements, are presented here. A syringe piston includes a piston body having a fluid end, an actuator end, and an outer seal-retaining surface between the fluid end and the actuator end. The syringe piston may utilize a piston sealing sleeve or a piston sealing cover. The sleeve can be coupled to the piston body around the outer seal-retaining surface, the piston sealing sleeve having a fin-shaped fluid seal element to form an interference fluid seal with an interior wall of a syringe barrel. The sealing cover can be coupled overlying the tip of the piston body. The cover has a fin-shaped fluid seal element to form an interference fluid seal with an interior wall of a syringe barrel.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: February 23, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Sarnath Chattaraj, Poonam S. Gulati, Kiem Dang, Jocelyn Anne Montebon
  • Patent number: 9265881
    Abstract: A therapeutic agent injection device including an injection device for delivering a therapeutic agent to a patient having a body, the body having a patient face and a port face opposite the patient face, the port face having an introducer port including an introducer channel and an injection port including an injection channel, the introducer channel being in fluid communication with the injection channel through a cross channel, the injection channel defining an injection axis; a delivery tube for subcutaneous delivery of the therapeutic agent to the patient, the delivery tube projecting from and being generally perpendicular to the patient face, the delivery tube defining an introducer axis and being in fluid communication with the injection port; and a patch, the patch being attached to the patient face and being operable to adhesively attach to the patient; wherein the injection axis is parallel to the introducer axis.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: February 23, 2016
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Susan McConnell Montalvo, Colin A. Chong, Hans Lickliter, Rafael Bikovsky
  • Patent number: 9265455
    Abstract: A method is provided for initializing an analyte sensor, such as a glucose sensor. Where a sensor has been disconnected and reconnected, a disconnection time is determined and a sensor initialization protocol is selected based upon the disconnection time. The sensor initialization protocol may include applying a first series of voltage pulses to the sensor. A method for detecting hydration of a sensor is also provided.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: February 23, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Rebecca K. Gottlieb, Chia-Hung Chiu, Ashwin K. Rao
  • Patent number: 9259528
    Abstract: A safety coupling for a fluid infusion device is provided. The device includes a first coupling device coupled to a drive system of the fluid infusion device, and a second coupling device coupled to a stopper of a fluid reservoir associated with the fluid infusion device. The first coupling device and the second coupling device cooperate to resist the movement of the stopper relative to the drive system.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: February 16, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventor: Mark S. Curtis
  • Patent number: 9237865
    Abstract: Embodiments of the invention provide analyte sensors having elements designed to modulate their chemical reactions as well as methods for making and using such sensors. In certain embodiments of the invention, the sensor includes a hydrophilic comb-copolymer having a central chain and a plurality of side chains coupled to the central chain, wherein at least one side chain comprises a silicone moiety.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: January 19, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Yunbing Wang, Rajiv Shah, Jenn-Hann Larry Wang, William P. Van Antwerp, Brooks B. Cochran
  • Patent number: 9233203
    Abstract: A needle structure for communicating media to or from a patient includes a hollow shaft having two ends and a longitudinal dimension between the two ends. A passage is provided along at least a portion of its longitudinal dimension for conveying a flowable media. The shaft has at least one bend along its longitudinal dimension to dampen motion of one end of the needle relative to the other end of the needle.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: January 12, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Sheldon B. Moberg, Ian B. Hanson, Paul S. Cheney, II
  • Patent number: 9226709
    Abstract: An ICE message system and method having a medical system for use with a patient, the medical system including a personal medical device attached to the patient and a display operably connected to the personal medical device. The personal medical device includes a monitor operable to detect an emergency condition at the personal medical device, and a processor operably connected to the monitor and operable to select an ICE message in response to the emergency condition. The display is operable to display the ICE message, which includes emergency contact information.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: January 5, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventor: George J. Montague
  • Patent number: 9231617
    Abstract: A device for delivering fluid to a user includes a housing, a drive motor assembly in the housing, other internal components in the housing, and a keypad external to the housing. The device includes a number of features and elements that enhance its operation, manufacturability, reliability, and user-friendliness. These features and elements include a shock absorbing element for a battery of the device, a keypad actuator layer that overlies a keypad assembly and forms a water resistant seal with the housing, and an offset element for a piezoelectric speaker that is located inside the housing.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: January 5, 2016
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Paul S. Cheney, II, Afshin Bazargan, Andrew B. Nguyen, David Law
  • Patent number: 9220840
    Abstract: A modular external infusion device that controls the rate a fluid is infused into an individual's body, which includes a first module and a second module. More particularly, the first module may be a pumping module that delivers a fluid, such as a medication, to a patient while the second module may be a programming module that allows a user to select pump flow commands. The second module is removably attachable to the first module.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: December 29, 2015
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Emilian Istoc, Himanshu Patel
  • Patent number: 9215995
    Abstract: Embodiments of the invention provide amperometric analyte sensors having multiple related structural elements (e.g. sensor arrays comprising a working, counter and reference electrode) and algorithms designed for use with such sensors. While embodiments of the innovation can be used in a variety of contexts, typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: December 22, 2015
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Rebecca K. Gottlieb, Chia-Hung Chiu, Meena Ramachandran, Nandita Dangui-Patel, Jefferson Rose, Ashwin K. Rao, Hsifu Wang, Ying Luo
  • Patent number: 9213010
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: December 15, 2015
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Ning Yang, Rajiv Shah
  • Patent number: 9204840
    Abstract: A method of calibrating glucose monitor data includes collecting the glucose monitor data over a period of time at predetermined intervals. It also includes obtaining at least two reference glucose values from a reference source that temporally correspond with the glucose monitor data obtained at the predetermined intervals. Also included is calculating the calibration characteristics using the reference glucose values and corresponding glucose monitor data to regress the obtained glucose monitor data. And, calibrating the obtained glucose monitor data using the calibration characteristics is included. In preferred embodiments, the reference source is a blood glucose meter, and the at least two reference glucose values are obtained from blood tests. In additional embodiments, calculation of the calibration characteristics includes linear regression and, in particular embodiments, least squares linear regression. Alternatively, calculation of the calibration characteristics includes non-linear regression.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: December 8, 2015
    Assignee: Medtronic Minimed, Inc.
    Inventors: John J. Shin, Nandita N. Patel, Sami Kanderian, Jr., Lu Wang, Richard Yoon
  • Patent number: 9205191
    Abstract: Various embodiments of the present invention are directed to transferring fluidic media from a vial to a reservoir. In various embodiments, fluidic media may be transferred from the vial to the reservoir by moving a housing portion to move a plunger head located in the reservoir to draw fluidic media from the vial to the reservoir. In other embodiments, fluidic media may be transferred from the vial to the reservoir while the reservoir is held by a holding unit and vibrated by a vibrator to remove air from the fluidic media. In some embodiments, fluidic media may be transferred from the vial to the reservoir by moving a handle operatively connected to a bias member for assisting with the transfer of fluidic media. In other embodiments, the transfer of fluidic media may be assisted by a bias member and a needle connecting atmosphere and the vial.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: December 8, 2015
    Assignee: Medtronic MiniMed, Inc.
    Inventor: Julian D. Kavazov
  • Patent number: 9199043
    Abstract: A fluid syringe of the type used with fluid infusion devices is presented here. The fluid syringe generally includes a barrel, a piston, and a check valve seal. The barrel has an interior wall and a sealed main fluid chamber. The piston is slidably coupled within the barrel, and the piston has a piston seal forming an interference fluid seal against the interior wall. The check valve seal is coupled to the piston, and it is located between the piston seal and the main fluid chamber. The check valve seal forms an interference fluid seal against the interior wall when the piston is unloaded, and it disengages the interior wall to allow gas flow from the main fluid chamber toward the piston seal when the piston is loaded.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: December 1, 2015
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Sarnath Chattaraj, Poonam S. Gulati, Lance P. Hoffman, Kiem Dang
  • Patent number: 9199030
    Abstract: A delivery device includes first and second housing portions that selectively engage and disengage. A reservoir on one housing portion operatively engages a drive device and/or a needle inserting device on the other housing portion. Upon proper engagement of the housing portions, the reservoir operatively couples to the drive device and/or the needle inserting device. A first magnet on the first housing portion and a second magnet (or a magnetically-attractive material) on the second housing portion are positioned to magnetically interact with each other, upon operative engagement of the housing portions. A third magnet on the second housing portion may be opposed to the first magnet to help align the housing portions for connection. A magnet-responsive device may be on one or both housing portions to detect alignment and/or connection of the housing portions.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: December 1, 2015
    Assignee: Medtronic MiniMed, Inc.
    Inventors: R. Paul Mounce, Melissa D. Norton, Paul F. Bente, IV, Ian B. Hanson, Sheldon B. Moberg, Paul H. Kovelman
  • Publication number: 20150331419
    Abstract: Infusion systems, infusion devices, and related operating methods are provided. An exemplary method of operating an infusion device capable of delivering fluid to a user involves determining one or more signal characteristics associated with a subset of the measurements corresponding to a monitoring period, determining a reliability metric for the monitoring period based on the one or more signal characteristics, and providing indication of a maintenance condition when the reliability metric violates a threshold.
    Type: Application
    Filed: May 19, 2014
    Publication date: November 19, 2015
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Keith Nogueira, Xiaolong Li, Rajiv Shah, Brian T. Kannard