Abstract: A vehicle door handle device includes a base case secured to a door, and an L-shaped handle lever rotatably mounted on the base case by a supporting shaft and connected to a latch device of the door by way of a connecting member. The handle lever includes an operation arm extending in a first direction and receiving a manual operational force and a coupling arm extending in a second direction substantially orthogonal to the first direction to be connected to the connecting member. The operation arm is made of a synthetic resin and has a small specific gravity, and the coupling arm is made of a metal and has a great specific gravity. The base portions of the operation arm and the coupling arm are undetachably coupled with each other by the supporting shaft.
Abstract: This invention is a silver powder having a low-temperature sintering performance and dispersibility, which allows the powder particles to be agglomerated to a small degree and be nearly in the monodisperse state. Employed is silver powder of fine silver particles each to which fine silver particles adhere, wherein fine silver particles of nano-order particle size are adhered to the surface of each silver powder particle. The powder particles of the silver powder of fine silver particles each to which fine silver particles adhere have excellent dispersibility.
Abstract: The force from a drive rod driven by an electric motor is transmitted via a link arm pivotally linked to the drive rod and a back door. When the back door is operated in opening direction, the link arm is supported by open-side support sliders and the acting direction of the force applied to the link arm by the drive rod is shifted to the opening direction of the back door. When the back door is operated in dosing direction, the link arm is supported by closed-side support slider and a closed-side support roller and the acting direction of the force applied to the link arm by the drive rod is shifted to the closing direction of the back door. The open-side and closed side support sliders are pressed against the link arm by leaf spring members so that the link arm is prevented from oscillating between the sliders.
Type:
Application
Filed:
February 15, 2005
Publication date:
August 18, 2005
Applicants:
Honda Motor Co., Ltd., Mitsui Mining and Smelting Co., Ltd., Mitsuba Corporation
Abstract: Provision of a releasing layer transfer film which can form, in a simple manner, a releasing layer on a COF flexible printed wiring board, the releasing layer preventing melt adhesion of an insulating layer to a heating tool, thereby enhancing productivity and reliability of semiconductor devices produced by use of a semiconductor chip mounting line. The releasing layer transfer film 1 for forming a releasing layer onto an insulating layer serving as a component layer of a COF flexible printed wiring board, the releasing layer transfer film includes a transfer film substrate 2 and a transferable releasing layer 3 provided on a surface of the transfer film substrate 2, wherein the transferable releasing layer 3 is formed from a releasing agent and can be transferred onto the insulating layer.
Abstract: A method of forming a dielectric layer containing dielectric filler, which is excellent in film thickness uniformity, from a polyimide electrodeposition liquid containing dielectric filler. In particular, a method of forming a polyimide coating container dielectric filler on a surface of metallic material according to the electrodeposition coating technique, characterized in that as the dielectric filler, use is made of dielectric powder of perovskite structure in approximately spherical form which has an average particle diameter (D1A) of 0.05 to 1.0 ?m and a weight cumulative particle diameter (D50), measured in accordance with the laser diffraction scattering type particle size distribution measuring method, of 0.1 to 2.0 ?m and further exhibits an aggregation degree, in terms of D50/D1a wherein D50 and D1a represent a weight cumulative particle diameter and an average particle diameter obtained by image analysis, respectively, of 4.5 or less.
Abstract: A device placed in a tank and used for detecting a leakage of liquid in the tank. Vertical measurement tube passages (10, 14) into which the liquid in the tank is introduced have a measurement tube (10) and a measurement thin tube (14). The measurement thin tube (14) communicates with the measurement tube and is located lower than the measurement tube. The measurement thin tube has a cross-sectional area that is equal to or smaller than {fraction (1/50)} of that of the measurement tube. A thermal flow sensor (16) used for measuring a liquid flow rate is attached to the measurement thin tube (14). There is provided leakage detecting means (22) for detecting a leakage of liquid in the tank according to the flow rate value measured by the sensor. The leakage detecting means generates a leakage detection signal when a flow rate value measured by the sensor is within a range greater than 0 and smaller than the flow rate value obtained when liquid is added to the tank or when the liquid in the tank is taken out.
Abstract: This invention aims to provide a method of manufacturing a cerium-based abrasive containing coarse particles in lower concentration and having higher polishing ability and excellent cleanability for a polished face. Further, the present invention provides a method of manufacturing a cerium-based abrasive, including the steps of pulverizing a raw material, roasting a raw material after pulverization and disintegrating a raw material after roasting, in which a cerium-based rare earth carbonate or a mixture of a cerium-based rare earth carbonate and a cerium-based rare earth oxide is used as a cerium-based abrasive raw material, and the step of pulverizing a raw material pulverizes a raw material through heating while the material is kept immersed in aqueous solution.
Abstract: An object is to provide a dielectric layer of a double-sided copper clad laminate, for use in formation of a built-in capacitor layer, which can be formed in an optional thickness without using a skeletal material and is provided with a high strength. For the purpose of achieving the object, “a dielectric filler containing resin for use in formation of the built-in capacitor layer of a printed wiring board obtained by mixing a binder resin comprising 20 to 80 parts by weight of epoxy resin (inclusive of a curing agent), 20 to 80 parts by weight of a solvent soluble aromatic polyamide resin polymer, and a curing accelerator added in an appropriate amount according to need; and a dielectric filler which is a nearly spherical dielectric powder having perovskite structure which is 0.1 to 1.0 ?m in the average particle size DIA, 0.2 to 2.0 ?m in the weight cumulative particle size D50 based on the laser diffraction scattering particle size distribution measurement method, and 4.
Abstract: The present invention provides a technique which permits the withstand voltage measurement of a laminate web for capacitor layer manufactured by a continuous laminating method in a roll state wound around a core tube. The invention provides a roll of laminate for capacitor layer which is obtained by manufacturing a laminate web for capacitor layer by laminating a first electrically conductive layer, a dielectric layer and a second electrically conductive layer and winding this laminate web for capacitor layer from a start end side to a terminal end side thereof around a core tube.
Abstract: This invention provides a metal foil and an etching process which overcomes the problem of etching of the copper foil layer and the plating copper layer formed on a metal clad laminate during the conventional semi-additive process for producing printed wire boards. In the present invention, the metal foil and the metal foil with carrier foil include a nickel or tin layer 0.5 to 3 ?m thick formed on the external surface of a metal clad laminate which protects the surface of the plated layer during the final flash etching of the copper foil layer.
Abstract: This invention is a method for producing a cerium-based abrasive which includes: a step of grinding raw material for the cerium-based abrasive; a step of roasting the ground raw material; and a step of subjecting the roasted raw material to wet processing, the method being characterized in that it further includes a lower-temperature re-roasting step of heating the wet-processed raw material at 200 to 700° C. In the invention disclosed in this application, an abrasive with particularly preferable properties can be produced by fully drying the wet-processed raw material in a drying step, and subsequently subjecting the dried raw material to the lower-temperature re-roasting step.
Abstract: The present invention provides a printed circuit board whose insulating layer is not melt-adhered to a heating tool, to thereby enhance reliability and productivity of a semiconductor chip mounting line, and also provides a method of producing the printed circuit board. The printed circuit board contains a flexible printed wiring board and a semiconductor chip mounted on the flexible printed wiring board, wherein the flexible printed wiring board includes: an insulating layer 12 and a wiring pattern 21 formed of a conductor layer 11 provided on at least one side of the insulating layer 12 and a releasing layer 13 provided on a surface of the insulating layer 12, which surface is opposite to the mounting side of the semiconductor chip.
Abstract: The present invention provides a cerium-based abrasive slurry particles including a cerium-based abrasive particle of no less than 95% by weight of total rare earth oxides (TREO), in which the cerium-based abrasive particle has less than 3% by weight of fluorine content of TREO, and a particle size distribution determined by a laser diffraction method is within a predetermined range. And adhesion property is further improved by setting this fluorine content in 0.005 to 0.5% by weight of TREO.
Abstract: A film carrier tape for mounting an electronic part comprising an insulating film and a wire pattern which is made of a conductive metal and is provided on the surface of the insulating film, wherein an undercoating layer containing nickel as a main constituent is formed on at least a part of the surface of the wiring pattern made of a conductive metal, an intermediate layer containing palladium as a main constituent is formed on the surface of he undercoating layer, a surface layer containing gold as a main constituent is formed on the surface of the intermediate layer, and the average thickness of the intermediate layer containing palladium as a main constituent is not more than 0.04 ?m.
Abstract: A multi-layer printed wiring board having via holes is characterized by having the outer copper wifing circuit lines on a layer of an alkaline refractory metal which is adjacent to a thermosetting resin layer. An alkaline refractory metal which is insoluble is alkaline etching solutions, is electrodeposited on the surface of copper foil, then a thermosetting resin is applied to the surface and semi-cured to obtain a coated copper foil. The coated copper foil is bonded to one or both faces of an inner layer board having wirings on one or both of its faces. Then, the copper foil on a surface of this laminate is removed by alkaline etching, while selectively leaving the alkaline refractor metal layer. A laser beam is used to form via holes in both the alkaline refractory metal layer and the thermosetting resin layer simultaneously.
Abstract: It is an object to provide a product having a good crystal particle size distribution of a high-purity potassium fluorotantalate crystal or a high-purity potassium fluoroniobate crystal without using a physical method for particle classification. To that end, a method for manufacturing a high-purity potassium fluorotantalate crystal or a high-purity potassium fluoroniobate crystal is used, wherein the recrystallizing step comprising a first cooling process of cooling a saturated solution with a temperature of 60° C. to 90° C. obtained in the dissolving step at a cooling speed of T° C./hour until the solution temperature of the saturated solution becomes a temperature of the range of 35 to 50° C., and a second cooling process of cooling the solution at a cooling speed of [T?18]° C./hour to [T?1]° C./hour from the end of the first cooling process to the solution temperature becoming a temperature of 10 to 20° C.
Abstract: An outlet port in the upper end of a fluid flow passageway vertically formed in a flow rate measuring section (8) disposed in a fluid storage recess (23) communicating with a fluid inlet pipe through an opening (21a) communicates with a fluid outlet pipe (22) through an opening (22a). The heat type flow rate sensor (10) disposed in the flow rate measuring section (8) has a fin plate projecting into the fluid flow passageway through a sensor mount hole (8c). The flow rate measuring section (8) is formed with an auxiliary flow passageway for leading the fluid within the fluid storage recess (23) to the inlet port (811) in the lower end of the fluid flow passageway, the auxiliary flow passageway extending in parallel with the fluid flow passageway and having fluid introducing ports (822, 823, 824) and a fluid delivering port (821) leading to the fluid flow passageway.
Abstract: A cerium-based abrasive and a production method of the cerium-based abrasive excellent in polishing properties of a high polishing speed and scarce formation of polishing scratches are provided by keeping the color of the abrasive in specified ranges or stably making fluorine be contained in the abrasive. For example, as such a cerium-based abrasive, examples include a cerium-based abrasive containing cerium oxide as a main component and having an L* value in a range not lower than 65 and or lower 90, an a* value in a range 0 or higher but 15 or lower, and a b* value in a range 10 or higher but 30 or lower in the case the color is expressed by an L*a*b* color system.
Abstract: A p-type thermoelectric material is prepared by mixing and melting at least two members selected from bismuth, tellurium, selenium, antimony, and sulfur to obtain an alloy ingot; grinding the alloy ingot to obtain powder of the allow mass; and hot pressing the powder. At least the hot pressing is carried out in the presence of any one of hexane and solvents represented by CnH2n+1OH or CnH2n+2CO (where n is 1, 2 or 3). A dopant may be used at the step of mixing.
Abstract: An object of the present invention is to provide a laminate for forming a capacitor layer for a printed wiring board which is capable of ensuring a higher capacitance and an inner layer core material using the laminate for example. In order to achieve this object, a material for forming a capacitor layer comprising a three-layered structure of an aluminum layer 2/a modified alumina barrier layer 3/an electrode copper layer 4 is used, such as a laminate 1a for forming a capacitor layer in which the above described modified alumina barrier layer 3 is obtained through subjecting one side of an aluminum plate or aluminum foil to an anodic treatment to form an alumina barrier layer as a uniform oxide layer and then subjecting the alumina material with the above described alumina barrier layer formed thereon to a boiling and modifying treatment in water and the above described modified aluminum barrier layer 3 is used as a dielectric layer.