Abstract: Provided are a polymerizable composition for a dental material that can yield cured molded bodies having superior mechanical strength, a molded body obtained by curing the composition, and a dental material including the molded body. A polymerizable composition for a dental material, the polymerizable composition containing: one selected from the group consisting of allyl compound (A) and an oligomer of allyl compound (A); and (meth)acrylate compound (B).
Abstract: A laminated iron core manufacturing apparatus for laminating a plurality of punched members obtained by punching a plate-shaped member, including: a convey unit conveys the plate-shaped member; a lifter supports the plate-shaped member; a liquid material supply unit adheres a liquid material to regions to be the punched members of one main surface of the plate-shaped member; and a punching unit to punches the plate-shaped member after the liquid material is applied to form the punched members. The liquid material supply unit adheres the liquid material to the plate-shaped member while avoiding, in the regions to be the punched members in the plate-shaped member, a contact region where the lifter on a downstream side of an adhesion location of the liquid material in the liquid material supply unit and on an upstream side of the punching unit comes into contact with the plate-shaped member.
Abstract: A temporary fixing composition is provided that is used to temporarily fix a first bonding target material and a second bonding target material to each other before the two bonding target materials are bonded to each other. The temporary fixing composition contains a first organic component having a viscosity of less than 70 mPa·s at 25° C. and a boiling point of 200° C. or lower and a second organic component having a viscosity of 70 mPa·s or greater at 25° C. and a boiling point of 210° C. or higher. It is preferable that, when thermogravimetry-differential thermal analysis is performed under the conditions at a temperature increase rate of 10° C./min in a nitrogen atmosphere with a sample mass of 30 mg, the 95% mass reduction temperature is lower than 300° C.
Abstract: There is provided a copper-clad laminate in which transmission characteristics exhibited by a resin layer can be further improved while sufficient peel strength between a copper foil and the resin layer is ensured. The laminate includes a copper foil; an adhesive layer including a polyphenylene ether resin, a polyimide resin, an olefin-based resin, a liquid crystal polymer, a polyester resin, a polystyrene resin, a hydrocarbon elastomer, a benzoxazine resin, an active ester resin, a cyanate ester resin, a bismaleimide resin, a butadiene resin, a hydrogenated or non-hydrogenated styrene butadiene resin, an epoxy resin, a fluororesin, a vinyl-group-containing resin, or the like; and a resin layer. The maximum height Sz at a copper foil surface on the adhesive layer side is 6.8 ?m or less. The dielectric loss tangent value of the adhesive layer at 1 GHz, ?a, is equal to or less than that of the resin layer, ?r.
Abstract: The purpose of the present invention is to provide: a film having high thermal stability, high bending strength (tensile elongation), small retardation in the thickness direction, a low coefficient of thermal expansion, and high transparency; and a polyamic acid or varnish for obtaining the film. The film satisfies all of requirements (i)-(vi) below. (i) The average value of the coefficient of thermal expansion in the range of 100-200° C. is 35 ppm/K or less. (ii) The absolute value of the retardation in the thickness direction is 200 nm or less per 10 ?m of thickness. (iii) The glass transition temperature is 340° C. or higher. (iv) The total light transmittance is at least 85%. (v) The b* value in the L*a*b* color system is 5 or less. (vi) The tensile elongation is at least 10%.
Abstract: Provided is a pellicle film, which includes plural carbon nanotubes, in which an average value of linearity parameters represented by the following Formula (1) of the plurality of carbon nanotubes is 0.10 or less: linearity parameter=standard deviation Sa of a width of single tube/average value Aa of the width??Formula (1): wherein, in Formula (1), the single tube indicates one carbon nanotube included in the plural carbon nanotubes, each of the standard deviation Sa and the average value Aa is calculated based on 11 measurement values obtained by measuring a width of the single tube at intervals of 2 nm along a longitudinal direction of the single tube.
Abstract: [Problem] To provide a laminate having a polar resin layer, which is excellent in transparency and mechanical strength (in particular impact resistance), and a polar resin composition for forming the polar resin layer of the laminate having such properties. [Solution] A polar resin composition including 5 to 30% by mass of an ethylenic polymer (A), 40 to 85% by mass of a polar resin component (B), and 10 to 40% by mass of a modified ethylene/?-olefin copolymer (C) obtained by modifying an ethylene/?-olefin copolymer (CO) with an unsaturated carboxylic acid or a derivative thereof and having a melt flow rate (190° C., 2.16 kg load) of 0.1 to 50 g/10 minutes, provided that the sum of proportions of the (A), (B), and (C) is 100% by mass.
Abstract: The size of a driving portion for a sliding door is reduced. Drive mechanism drives sliding door that can move along rail provided in a lower part of a vehicle. Drive mechanism comprises: door opening and closing cables each having first end that is fixed to sliding door; and driving portion to which a. second end of door opening cable and a second end of door closing cable are fixed, wherein driving portion drives door opening cable and door closing cable. Driving portion includes: door opening drum to which the second end of door opening cable is fixed and onto which door opening cable is wound; and door closing drum to which the second end of door closing cable is fixed and onto which door closing cable is wound. Door opening drmn and door closing drum are arranged along rail between a front end and a rear end of rail.
Abstract: A water dispersion composition containing an ethylene·?-olefin copolymer acid-modified product (B) in a range of 0.01 to 50% by mass, wherein the ethylene·?-olefin copolymer acid-modified product (B) is an acid-modified product of an ethylene·?-olefin copolymer (A) satisfying requirements (A1) to (A6) as specified herein and also satisfies the requirements (B1) to (B5) as specified herein.
Abstract: A method for manufacturing a photochromic lens includes: a step of injecting a polymerizable composition through an injection part in an injection molding apparatus and filling a gap with the polymerizable composition through a space; a step of heating the filled polymerizable composition to be polymerized and cured and forming a photochromic layer on a resin substrate; and a step of taking out a resulting laminate composed of the resin substrate and the photochromic layer, in which the polymerizable composition includes an isocyanate compound, a thiol compound, a polyol compound, and a photochromic compound.
Abstract: A polythiol composition including a polythiol compound (A) and a compound represented by formula (1), wherein, in formula (1), m and n each independently represent 0 or 1, and m+n=1.
Abstract: There is provided a resin composition exhibiting excellent dielectric properties, high adhesion to a low-roughness surface, heat resistance, and excellent water-resistant reliability. This resin composition includes an arylene ether compound having a weight average molecular weight of 30000 or higher and a styrenic copolymer having, in its molecule, a reactive unsaturated bond that exhibits reactivity by heat or an ultraviolet ray.
Abstract: Provided are a film for manufacturing semiconductor component, a film for electronic component manufacture, a method for manufacturing a semiconductor component using such a film for manufacturing semiconductor component, and a method for manufacturing an electronic component using such a film for electronic component manufacture. The film for component manufacture includes a base layer and an adhesive layer provided on one surface side of the base layer, and the Ra (?m) of the surface of one side of the base layer on which the adhesive layer is not provided is 0.1 to 2.0, and the Rz (?m) is 1.0 to 15. The method using the film for component manufacture includes a segmenting step, a pickup step, and an evaluation step prior to the pickup step.
Abstract: A positive electrode for a lithium ion secondary battery, including a positive electrode current collector; and a positive electrode mixture layer that is provided on at least one side of the positive electrode current collector, the positive electrode mixture layer including a positive electrode active material layer, and an undercoat layer formed between the positive electrode current collector and the positive electrode active material layer, the undercoat layer containing a conductive auxiliary, a binder, and a thermally expandable microcapsule having a maximum volume expansion temperature of from 70° C. to 180° C.
Abstract: An opening and closing device for a vehicle sliding door, including: a latch; a ratchet; a power closer; a closing lever configured to rotate the latch in a closing direction from a half latched position to a fully latched position, by being rotated by motor power of the power closer; a cancel lever configured to shift between: a coupling position where rotation of the closing lever is transmitted to the latch; and a cancel position where rotation of the closing lever is not transmitted to the latch; and a first lever and a second lever configured to move the cancel lever from the coupling position to the cancel position by operation of an operating handle of a sliding door, wherein the cancel lever includes a non-flat reinforced contacting part to which the first lever and the second lever are independently configured to brought into contact.
Abstract: A door lock device includes: a latch; a ratchet; an outer lever; an open link; a first elastic member; an inertia lever; a second elastic member; a fitting hole provided to an acting piece protruding from the inertia lever; and a protrusion provided to the open link, wherein when an inertial force equal to or greater than a set value is exerted in a direction from an interior to an exterior, the inertia lever rotate against a biasing force of the second elastic member, the acting piece press the protrusion, the open link swing against a biasing force of the first elastic member by the protrusion being pressed by the acting piece, and the protrusion becomes fitted inside the fitting hole which achieves an inertia engagement configuration in which the inertia lever is kept at the blocking position and the open link is kept at the inertia engaging position.
Abstract: A bonding composition contains copper powder, a liquid medium, and a reducing agent. The reducing agent contains at least one amino group and a plurality of hydroxyl groups. The reducing agent has a boiling point that is higher than the boiling point of the liquid medium. The reducing agent has a melting point that is equal to or below the sintering temperature of the copper powder. Preferably, the reducing agent is bis(2hydroxyethyl)iminotris(hydroxymethyl)methane. Preferably, the bonding composition has a viscosity of from 10 Pa·s to 200 Pa·s at a shear rate of 10 s?1 at 25° C. Preferably, the bonding composition contains from 0.1 parts to 10 parts by mass of the reducing agent and from 10 parts to 40 parts by mass of the liquid medium with respect to 100 parts by mass of the copper powder.
Abstract: This eyewear is provided with: a frame; a lens which is supported by the frame, and which includes an optical characteristic varying portion having an optical characteristic which is varied by means of electric control; a communication portion for receiving information from an external terminal; and a control portion for controlling the optical characteristic varying portion on the basis of the information received from the external terminal.
Abstract: A method for producing a semiconductor package, capable of effectively suppressing contamination of a chemical liquid and unintended peeling-off of a reinforcing sheet, is provided. This method includes providing a tacky sheet including a substrate sheet, and a soluble tacky layer and a banking tacky layer on at least one surface of the substrate sheet; making a first laminate including a redistribution layer; using the tacky sheet to obtain a second laminate having a second support substrate bonded to a surface on the redistribution layer side of the first laminate with the tacky layer therebetween; peeling off the first support substrate, pretreating the resulting third laminate; mounting a semiconductor chip on a pretreated surface of the redistribution layer; immersing the third laminate in a solution to dissolve or soften the tacky layer; and peeling off the second support substrate in a state where the tacky layer is dissolved or softened.
Abstract: An object of the present invention is to provide a resin composition including a thermoplastic resin and an inorganic filler, which can easily undergo molding processing and has flexibility and a sense of massiveness, and a molded article thereof. A resin composition, including 15 to 50 parts by mass of a specific 4-methyl-1-pentene/?-olefin copolymer (A), 10 to 50 parts by mass of an inorganic filler (B), and 5 to 49 parts by mass of a thermoplastic elastomer (C) (a total amount of 4-methyl-1-pentene/?-olefin copolymer (A), inorganic filler (B), and thermoplastic elastomer (C) is 100 parts by mass), wherein the thermoplastic elastomer (C) is at least one selected from the group consisting of an olefinic thermoplastic elastomer (C1) and a styrenic thermoplastic elastomer (C2); and a molded article including the resin composition.