Abstract: A functional layer with an adhesive layer of the present invention includes a functional layer and a curable adhesive layer AD2 arranged over at least apart of a surface of the functional layer, in which the curable adhesive layer AD2 satisfies all the following requirements (1) and (2). (1) In a case where 32 g of a steel ball is placed on an adhesive surface of the curable adhesive layer AD2 at 25° C. and kept as it is for 10 seconds, and then a glass plate is slowly tilted, the steel ball starts to roll at an angle of 5° or less. (2) After being cured at 90° C. for 2 hours, the curable adhesive layer AD2 satisfies a ratio (b/a) of a plastic deformation amount b to an elastic deformation amount a of 0.01 to 100 at 25° C. under a load of 0.1 mN.
Abstract: An over-center spring of a vehicle door latch device has a coil part that is loosely inserted on a spring support shaft, and a base end side spring leg part. A leading end side spring leg part elastically holds an abutting pin and is paired with the base end side spring leg part. A lock lever is provided with a slot through which the spring support shaft passes. The lock lever and the spring support shaft are disposed to be superposed on each other in an axial direction of the spring support shaft.
Abstract: Provided is a method with which it is possible to easily produce an electrode catalyst having excellent catalytic performance such as kinetically controlled current density. The method involves: a dispersion liquid preparation step of preparing a dispersion liquid by mixing (i) at least one type of solvent selected from the group consisting of sulfoxide compounds and amide compounds, (ii) a catalyst carrier powder constituted by a metal oxide, (iii) a platinum compound, (iv) a transition metal compound, and (v) an aromatic compound including a carboxyl group; and a loading step of heating the dispersion liquid to thereby load a platinum alloy of platinum and a transition metal on a surface of the catalyst carrier powder.
Abstract: An adhesive resin composition of the invention includes an ethylene polymer (A) including an ethylene polymer graft-modified with an unsaturated carboxylic acid or a derivative thereof, and satisfies the following requirements (1) to (4). (1) The melt flow rate (MFR) measured at a temperature of 190° C. and a load of 2160 g in accordance with ASTM D 1238 is 0.1 to 3 g/10 min. (2) The density is 910 to 930 kg/m3. (3) The proportion of fractions that elute at 50° C. and below in crystallization elution fractionation chromatography measurement is not less than 20 mass %. (4) The proportion of fractions that elute at 90° C. and above in crystallization elution fractionation chromatography measurement is not less than 25 mass %.
Abstract: Provided is a new phosphor which can be excited by visible light in a wide band to emit a broad fluorescence spectrum, and also to emit near-infrared light with high intensity. Proposed is a phosphor, which is an oxide comprising Ca, Cu, and Si, wherein the containing molar ratios of the elements are 0.15?Ca/Si<0.25 and 0.13?Cu/Si<0.25.
Abstract: Provided is a sensor module that includes: a casing; a contacted part that is disposed so that at least a part thereof is exposed to the outside of the casing and that has conductivity; and a detection part that has an electrostatic capacitance type detection pad and that is disposed inside the casing. The detection part further includes a conductive plate provided so as to correspond to the detection region of the detection pad, the contacted part being electrically connected to the conductive plate. This configuration makes it possible to provide a sensor module that is highly sensitive to contact with an object, and that prevents damage to the detection pad caused by contact with the object.
Abstract: An object of the present invention is to provide a highly heat resistant and highly rigid propylene-based polymer having unprecedentedly high stereoregularity. The propylene-based polymer of the present invention satisfies requirements (1) to (4) and preferably requirement (5): (1) an average meso chain length is 800 to 100,000; (2) a MFR is 0.5 to 1,000 g/10 minutes; (3) a ratio of Mw to Mn, Mw/Mn, as measured by GPC is 4.2 to 20; (4) when the ratio of a component which elutes at a temperature of 122° C. or more as measured by temperature rising elution fractionation (TREF) is A % by weight and the melt flow rate of the requirement (2) is B g/10 minutes, 100?A?20×EXP(?0.01×B); (5) an amount of a component soluble in n-decane at 23° C. is 0.01 to 2% by weight.
Type:
Grant
Filed:
June 29, 2018
Date of Patent:
April 5, 2022
Assignees:
MITSUI CHEMICALS, INC., PRIME POLYMER CO., LTD.
Abstract: This eyewear is provided with: a lens which has an electric element, an electrode of the electric element being disposed at an edge of the lens; a frame which has a control unit for controlling the electric element, and which holds the lens; a conductive wire which has a long conductor surface that extends along and facing such edge, and which is connected to the control unit; and a conductive piece which extends along and facing such edge and which comes into contact with the electrode and the conductor surface.
Abstract: A monomer composition, including: an acidic phosphoric acid ester (A); an amine-based catalyst (B); and a (meth)acrylate (E) having at least one of a urethane bond or a —NHC(?S)O— bond.
Abstract: An aluminum-based metal-resin composite structure (106) includes an aluminum-based metal member (103) in which a dendritic layer (103-2) is formed on at least a part of a surface, and a resin member (105) bonded to the aluminum-based metal member (103) via the dendritic layer (103-2) and formed of a thermoplastic resin composition, in which, when analysis is conducted with a Fourier transform infrared spectrophotometer (FTIR) on a surface (104) of a bonding portion with at least the resin member (105) in the aluminum-based metal member (103) and an absorbance of an absorption peak observed at 3400 cm?1 is defined as A1 and an absorbance at 3400 cm?1 of a straight line connecting an absorbance at 3800 cm?1 and an absorbance at 2500 cm?1 is defined as A0, an absorbance difference (A1?A0) is in a range of 0.03 or less.
Abstract: A process for producing a polymerizable composition for optical materials of the present invention includes a step A of mixing together a polyisocyanate compound (i), a polymer (ii) represented by General Formula (ii), a photochromic compound (iii), and an internal release agent (iv), a step B of mixing a mixed solution obtained by the step A with a polythiol compound (v), and a step C of further mixing a mixed solution obtained by the step B with a polymerization catalyst (vi) so as to obtain a polymerizable composition for optical materials, wherein in the step A, the internal release agent (iv) is added so that a content thereof in the polymerizable composition for optical materials is 500 to 3,000 ppm, and in the step C, the polymerization catalyst (vi) is added so that a content thereof in the polymerizable composition for optical materials is 120 to 500 ppm.
Abstract: A multi-layered board includes: a middle conductive layer; a first dielectric layer that is disposed directly on a first surface of the middle conductive layer; a second dielectric layer that is disposed directly on a second surface of the middle conductive layer; a first outer surface conductive layer that is disposed directly on an outer side of the first dielectric layer; and a second outer surface conductive layer that is disposed directly on an outer side of the second dielectric layer. The first outer surface conductive layer serves as a first outer surface of the multi-layered board, and the second outer surface conductive layer serves as a second outer surface of the multi-layered board. The middle conductive layer is solidly formed over an entire planar direction of the multi-layered board. The first dielectric layer and the second dielectric layer each independently have a thickness variation of 15% or less.
Abstract: An opening and closing system includes a first human detection sensor configured to detect a vehicle user who enters a first area defined on a periphery of a vehicle body, a lamp visible by the vehicle user who enters the first area, and a control device configured to control an unlocking operation of the lock device, a closing operation of the striker device, a pop-up operation of the striker device, and switching on and off of the lamp. The control device switches on the lamp when the vehicle user is detected by the first human detection sensor and starts the controlling of the unlocking operation of the lock device and the closing operation and the pop-up operation of the striker device in response to the lamp being switched on.
Abstract: A photopolymerization initiator including a peroxide, a photobase generator, and a photoradical generator; a photocurable composition; a cured product; and a dental material.
Abstract: A gas barrier polymer is formed by heat-curing a mixture including polycarboxylic acid and a polyamine compound, in which, in an infrared absorption spectrum, when a straight line connecting a measurement point at 1493 cm?1 and a measurement point at 1780 cm?1 is set as a baseline, an absorption intensity at 1660 cm?1 is set as I(1660), and an absorption intensity at 1625 cm?1 is set as I(1625), R represented by Equation (1) is greater than 1. R=I(1660)/I(1625)?{?0.65×(total amine/COOH)+0.
Abstract: An automatic door opening and closing system is provided with: an image capture unit that captures an image of a road surface around the vehicle, including around a door; a door lock unit that locks the door into a closed state; a drive unit that opens/closes the door; an operation unit to which a door opening operation is input; a notification unit that notifies an occupant who has operated the operation unit of information; and a control device. When a door opening operation is input to the operation unit, the control device detects an obstacle present on the road surface around the door using a captured image acquired by the imaging unit. In response to detecting the obstacle, the control device performs at least one of notification of the obstacle detection by the notification unit and invalidation of the door opening operation input to the operation unit.
Abstract: A polymerizable composition for an optical material includes a prepolymer which is a reaction product of a first amine compound (A1) having a weight-average molecular weight of less than 4,000, a first diol compound (B1) having a viscosity (25° C.) of equal to or less than 100 mPa·s, and a polyisocyanate compound (C); and a first polythiol compound (D1), in which the first amine compound (A1) is at least one selected from a polyetheramine and an aromatic amine, and the first polythiol compound (D1) includes a dithiol compound (d1) having two mercapto groups and a polythiol compound (d2) having equal to or more than three mercapto groups.
Abstract: A sheet set for encapsulating a solar battery including a first encapsulating sheet and a second encapsulating sheet which are disposed between a light-incident surface protective member and a back surface protective member, and are used to encapsulate solar battery elements is provided. When the first encapsulating sheet and the second encapsulating sheet are subjected to a heating and pressurization treatment in which the first encapsulating sheet and the second encapsulating sheet are heated and depressurized under defined conditions, a volume resistivity of the first encapsulating sheet measured under defined conditions, is higher than a volume resistivity of the second encapsulating sheet. The first encapsulating sheet is disposed between the light-incident surface protective member and the solar battery elements. The second encapsulating sheet has at least one polar group selected from a carboxyl group, an ester group, a hydroxyl group, an amino group, and an acetal group.
Abstract: An adhesive resin composition including a propylene polymer (A), an ethylene polymer (B), and a thermoplastic resin (C) including a copolymer containing not less than 60 mol % and not more than 99 mol % of structural units derived from 4-methyl-1-pentene, and not less than 1 mol % and not more than 40 mol % of structural units derived from a C2-C20 ?-olefin other than 4-methyl-1-pentene, these structural units representing total 100 mol % of the copolymer, the thermoplastic resin (C) showing a melting point Tm of not more than 199° C. or showing substantially no melting point as analyzed with a differential scanning calorimeter (DSC). The total of the components (A), (B) and (C) includes 45 to 75 parts by mass of the component (A), 5 to 20 parts by mass of the component (B), and 15 to 45 parts by mass of the component (C).
Abstract: A spunbonded non-woven fabric includes a fiber including a propylene homopolymer having a melting point of 140° C. or more, a polyethylene having a density of from 0.941 g/cm3 to 0.970 g/cm3, and at least one polymer selected from the group consisting of a polymer represented in (I) and a polymer represented in (II). In the spunbonded non-woven fabric, the fiber includes a sea-island structure, and the percentage of an island phase having a diameter of from 0.12 ?m to less than 0.63 ?m with respect to an island phase in a cross section orthogonal to the axis direction of the fiber on a number basis is 30% or more. (I) represents a random copolymer of propylene and at least one selected from ethylene or an ?-olefin having a carbon number of from 4 to 20. (II) represents a propylene homopolymer with a melting point of less than 120° C.