Patents Assigned to MKS Instruments, Inc.
  • Patent number: 9509266
    Abstract: A RF power supply system for delivering periodic RF power to a load. A power amplifier outputs a RF signal to the load. A sensor measures the RF signal provided to the load and outputs signals that vary in accordance with the RF signal. A first feedback loop enables control the RF signal based upon power determined in accordance with output from the sensor. A second feedback loop enables control the RF signal based upon energy measured in accordance with signals output from the sensor. Energy amplitude and duration provide control values for varying the RF signal. The control system and techniques are applicable to both pulsed RF power supplies and in various instances to continuous wave power supplies.
    Type: Grant
    Filed: July 7, 2014
    Date of Patent: November 29, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: David J. Coumou, Richard Pham
  • Patent number: 9499393
    Abstract: Stress relief structures and methods that can be applied to MEMS sensors requiring a hermetic seal and that can be simply manufactured are disclosed. The system includes a sensor having a first surface and a second surface, the second surface being disposed away from the first surface, the second surface also being disposed away from a package surface and located between the first surface and the package surface, a number of support members, each support member extending from the second surface to the package surface, the support members being disposed on and operatively connected to only a portion of the second surface. The support member are configured to reduce stress produced by package-sensor interaction.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: November 22, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Lei Gu, Stephen F. Bart
  • Patent number: 9488570
    Abstract: Described herein is a spectroscopic system and method for measuring and monitoring the chemical composition and/or impurity content of a sample or sample stream using absorption light spectroscopy. Specifically, in certain embodiments, this invention relates to the use of sample pressure variation to alter the magnitude of the absorption spectrum (e.g., wavelength-dependent signal) received for the sample, thereby obviating the need for a reference or ‘zero’ sample. Rather than use a reference or ‘zero’ sample, embodiments described herein obtain a spectrum/signal from a sample-containing cell at both a first pressure and a second (different) pressure.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: November 8, 2016
    Assignees: Pason Systems Corp., MKS Instruments, Inc.
    Inventor: Vidi A. Saptari
  • Patent number: 9476517
    Abstract: Pilot valve structures are described as including a main valve having a main flow body and having an inlet and outlet, and a diaphragm, with a perimeter, a moveable portion, and first and second sides. A main flow orifice is located in the flow body between the inlet and outlet. A main valve plug is attached to and/or disposed in the moveable portion of the diaphragm and opens and closes the flow orifice when the moveable portion of the diaphragm is in first and second positions. The pilot valve also includes a pilot valve inlet that is connected to the flow path of the main flow body. A pilot valve outlet/orifice is disposed within and co-located with the main valve plug. The pilot valve includes a pilot valve plug, which is moveable to open and close the pilot valve orifice. Related mass flow controllers with such pilot valve structures are further described.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: October 25, 2016
    Assignee: MKS Instruments, Inc.
    Inventor: Richard Gomes, II
  • Patent number: 9477851
    Abstract: A combiner includes N coaxial cables each configured to connect to a respective output of N radio frequency power amplifiers, where N is an integer greater than one. Each of the N coaxial cables is configured to receive an amplified radio frequency signal from a respective one of the N radio frequency power amplifiers. A board includes capacitances and is configured to connect to each of the N coaxial cables and combine the radio frequency signals. The N coaxial cables and the capacitances provide N inductance and capacitance combinations. A connector is configured to connect an output of the board to a load.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: October 25, 2016
    Assignee: MKS Instruments, Inc.
    Inventor: Christopher Michael Owen
  • Patent number: 9471066
    Abstract: A mass flow controller comprises: a pressure-based flow meter, a thermal-based flow meter, a control valve, and a system controller. The pressure-based flow meter and thermal-based flow meter each measure flow rate of mass through the mass flow controller. The control valve controls the flow rate in response to a control signal generated as a function of the flow rate as measured by thermal-based flow meter when the measured flow rate is relatively low, and as a function of the flow rate as measured by the pressure-based flow meter when the flow rate is relatively high. A comparison of the flow measurements of the two flow meters can be used to (a) sense pressure disturbances at low flow rates, and (b) sense when the thermal-based flow meter is out of calibration so that a zero offset signal can be applied to the thermal-based flow meter.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: October 18, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Michael L'Bassi
  • Patent number: 9429939
    Abstract: A method, controller, and system for monitoring a manufacturing process are described. Measured values of multiple variables, including dependent variables, manipulated variables, or both, are received. Future values of the manipulated variables, future values of the dependent variables, or both, are predicted. A multivariate analysis is performed on a combination of (1) the measured values of the variables and (2) the future values of the manipulated variables, the future values of the dependent variables, or both, to generate multivariate statistics.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: August 30, 2016
    Assignee: MKS Instruments, Inc.
    Inventor: Christopher Peter McCready
  • Publication number: 20160229688
    Abstract: Stress relief structures and methods that can be applied to MEMS sensors requiring a hermetic seal and that can be simply manufactured are disclosed. The system includes a sensor having a first surface and a second surface, the second surface being disposed away from the first surface, the second surface also being disposed away from a package surface and located between the first surface and the package surface, a number of support members, each support member extending from the second surface to the package surface, the support members being disposed on and operatively connected to only a portion of the second surface. The support member are configured to reduce stress produced by package-sensor interaction.
    Type: Application
    Filed: February 6, 2015
    Publication date: August 11, 2016
    Applicant: MKS INSTRUMENTS, INC.
    Inventors: Lei Gu, Stephen F. Bart
  • Patent number: 9404827
    Abstract: An ionization gauge to measure pressure and to reduce sputtering yields includes at least one electron source that generates electrons. The ionization gauge also includes a collector electrode that collects ions formed by the collisions between the electrons and gas molecules. The ionization gauge also includes an anode. An anode bias voltage relative to a bias voltage of a collector electrode is configured to switch at a predetermined pressure to decrease a yield of sputtering collisions.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: August 2, 2016
    Assignee: MKS Instruments, Inc.
    Inventor: Gerardo A. Brucker
  • Patent number: 9383286
    Abstract: An ionization gauge that measures pressure has an electron source that emits electrons, and an anode that defines an ionization space. The gauge also includes a collector electrode to collect ions formed by an impact between the electrons and a gas and to measure pressure based on the collected ions. The electron source is dynamically varied in emission current between a plurality of emission levels dependent on pressure and a second parameter other than pressure. The ionization gauge may also vary various operating parameters of the gauge components according to parameters stored in a non-volatile memory and selected by a user.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: July 5, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Larry K. Carmichael, Jesse A. Weber, John H. Henry, Michael N. Schott, Gerardo A. Brucker
  • Publication number: 20160181063
    Abstract: Improvements in the supply of high-frequency electrical power to ozone-producing cells can be accomplished using the systems and techniques described herein. Application of a DC-DC converter operating at a switching frequency substantially greater than a load frequency, supports generation of a high-voltage AC for powering such cells, while allowing for reductions in component size and reductions in a quality factor of a load tuning circuit. Controllable power inverters used in obtaining one or more of the switching and load frequencies can be controlled using feedback techniques to provide stable, high-quality power to ozone-producing cells under variations in one or more of externally supplied power and load conditions. An inrush protection circuit can also be provided to selectively introduce a current-limiting resistance until an input DC bus has been sufficiently initialized as determined by measurements obtained from the DC bus.
    Type: Application
    Filed: February 29, 2016
    Publication date: June 23, 2016
    Applicant: MKS Instruments, Inc.
    Inventors: Ken Tran, Feng Tian, Xing Chen, Franklin Lee
  • Patent number: 9372152
    Abstract: A method is provided for monitoring one or more silicon-containing compounds present in a biogas. The method includes generating a first absorption spectrum based on a ratio of a first spectral measurement and a second spectral measurement. The first spectral measurement is from a non-absorptive gas having substantially no infrared absorptions in a specified wavelength range of interest and the second spectral measurement is from a sample gas comprising the biogas. The method includes generating at least one surrogate absorption spectrum based on, at least, individual absorption spectrum for each of a subset of one or more silicon-containing compounds selected from a larger set of known silicon-containing compounds with known concentrations. A total concentration of the one or more silicon-containing compounds in the biogas can be calculated based on the first absorption spectrum and the at least one surrogate absorption spectrum.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: June 21, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Charles Mark Phillips, Barbara Marshik-Geurts, Leonard I. Kamlet, Martin L. Spartz, Vidi Saptari
  • Patent number: 9348339
    Abstract: A pulse gas delivery system for delivering a sequence of pulses of prescribed amounts of gases to a process tool, comprises: (a) a plurality of channels, each including (i) a gas delivery chamber; (ii) an inlet valve connected so as to control gas flowing into the corresponding gas delivery chamber; and (iii) an outlet valve connected so as to control the amount of gas flowing out of the corresponding gas delivery chamber; and (b) a dedicated multiple channel controller configured so as to control the inlet and outlet valves of each of the channels so that pulses of gases in prescribed amounts can be provided to the process tool in a predetermined sequence in accordance with a pulse gas delivery process.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: May 24, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Junhua Ding, Scott Benedict, Jaroslaw Pisera
  • Patent number: 9336995
    Abstract: A system has a first RF generator and a second RF generator. The first RF generator controls the frequency of the second RF generator. The first RF generator includes a power source, a sensor, and a sensor signal processing unit. The sensor signal processing unit is coupled to the power source and to the sensor. The sensor signal processing unit scales the frequency of the first RF generator to control the frequency of the second RF generator.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: May 10, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: David J. Coumou, Michael L. Kirk, Daniel M. Gill
  • Patent number: 9335231
    Abstract: Micro-Pirani gauge vacuum gauges are described that use low-thermal conductivity support elements. A micro-Pirani gauge or vacuum sensor can include a heating element operative to heat a gas and to produce a signal corresponding to the pressure of the gas; a platform configured to receive the heating element, with the platform having a first coefficient of thermal conductivity; and a support element connected to a substrate and configured to support the platform with the heating element within an aperture disposed in the substrate, with the support element having a second coefficient of thermal conductivity, where the second coefficient of thermal conductivity is less than the first coefficient of thermal conductivity. Multimode pressure sensing including a micro-Pirani gauge are also described.
    Type: Grant
    Filed: March 25, 2014
    Date of Patent: May 10, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Lei Gu, Stephen F. Bart, Ole Wenzel
  • Patent number: 9322738
    Abstract: A gas analyzer for a vacuum chamber includes processing electronics configured to receive mass spectral data, receive input of total pressure in the vacuum chamber, receive external input from at least one sensor, and employ the mass spectral data, the total pressure in the vacuum chamber, and the external input from the at least one sensor to calculate a vacuum quality index based on at least one criteria of quality.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: April 26, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Gerardo A. Brucker, Kenneth D. Van Antwerp, Jr.
  • Patent number: 9314824
    Abstract: Powder and deposition control in a throttle valve includes nozzle inserts in the valve body that form annular plenums and annular nozzles for injecting annular flows of cleaning gas adjacent to the inside wall surface of the valve body for cleaning powders and depositions off surfaces in the valve body and off the closure member of the throttle valve. The annular flows of cleaning gas can be in intermittent, periodic, or in pulsed bursts or at a steady-state flow rates to dislodge powder particles stuck to the inside surface of the throttle valve, to etch or reactively clean solid deposits, or to prevent or minimize build-up of powder particles or solid deposits in the throttle valve.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: April 19, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Youfan Gu, Matthew C. Grout
  • Patent number: 9316675
    Abstract: A system includes a control module, a detection module, and a reaction module. The control module is configured to receive a sensor signal indicating a power characteristic of an output power provided from a power generator to a load. The load is separate from the control module and the power generator. The detection module is configured to (i) detect a shift parameter of the power characteristic based on the sensor signal, (ii) compare the shift parameter to a first threshold, and (iii) indicate whether the shift parameter has exceeded the first threshold and not a second threshold. The reaction module is configured to indicate that a low-level abnormality exists in the load in response to the shift parameter exceeding the first threshold and not the second threshold.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 19, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Jesse N. Klein, Richard Pham
  • Patent number: 9310294
    Abstract: Methods and systems are provided for monitoring at least one gas in a sample gas. An exemplary system includes a source used for generating a beam of radiation, at least one retro-reflector configured to receive the beam of radiation from the source in an incident direction and reflect the beam of radiation toward the source in alignment with the incident direction, and a motor configured to move the at least one retro-reflector with respect to the source in a direction collinear with the incident direction. The system also includes a sample cell storing a sample gas comprising at least one gas. The sample cell is configured to allow at least a portion of an extracted beam of radiation from a cavity, defined by the source and the at least one retro-reflector, to propagate therethrough.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: April 12, 2016
    Assignee: MKS Instruments, Inc.
    Inventor: Robert M. Carangelo
  • Patent number: 9302912
    Abstract: Improvements in the supply of high-frequency electrical power to ozone-producing cells can be accomplished using the systems and techniques described herein. Application of a DC-DC converter operating at a switching frequency substantially greater than a load frequency, supports generation of a high-voltage AC for powering such cells, while allowing for reductions in component size and reductions in a quality factor of a load tuning circuit. Controllable power inverters used in obtaining one or more of the switching and load frequencies can be controlled using feedback techniques to provide stable, high-quality power to ozone-producing cells under variations in one or more of externally supplied power and load conditions. An inrush protection circuit can also be provided to selectively introduce a current-limiting resistance until an input DC bus has been sufficiently initialized as determined by measurements obtained from the DC bus.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 5, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Ken Tran, Feng Tian, Xing Chen, Franklin Lee