Patents Assigned to MKS Instruments, Inc.
  • Patent number: 9291649
    Abstract: A radio frequency sensor system includes a printed circuit board (PCB). The PCB includes a first exterior layer, a second exterior layer, a first interior layer, a second interior layer, and an inner perimeter that defines an aperture through the PCB. The PCB also includes a first loop. The first loop includes a first plurality of sensor pads coupled to a first plurality of vias by a first plurality of traces. The first plurality of sensor pads is arranged on the inner perimeter. The PCB also includes a second loop. The second loop includes a second plurality of sensor pads coupled to a second plurality of vias by a second plurality of traces. The second plurality of sensor pads is arranged on the inner perimeter. A core ring is embedded within the first interior layer proximal to the first plurality of sensor pads, the first plurality of vias, and the first plurality of traces. A center conductor, for carrying RF current, extends through the aperture.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 22, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Dennis M. Brown, David J. Coumou, Raymond Brooks
  • Patent number: 9294136
    Abstract: A system for detecting and correcting for spurious frequencies that may coincide in a bandwidth of interest in an RF metrology system. The system can (1) utilize a deterministic scheme to detect an interference by a spurious frequency and correct the distortion effect or (2) utilize a mixed signal processing architecture to avoid the occurrence of spurious frequency contamination. A detection scheme identifies the event of distortion and triggers either (a) a shift in the analog to digital convert sample rate or (b) a mathematical vector manipulation. The shift of the analog to digital convert sample rate moves an aliased image of the spurious frequency outside of the frequency of interest. The mathematical vector correction removes the distortion and restores the signal of interest.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: March 22, 2016
    Assignee: MKS Instruments, Inc.
    Inventor: David J. Coumou
  • Patent number: 9275839
    Abstract: A plasma chamber for activating a process gas, including at least four legs forming a toroidal plasma channel, each leg having a cross-sectional area, and an outlet formed on one leg, the outlet having a greater cross-sectional area than the cross-sectional area of the other legs. The plasma chamber further includes an inlet for receiving the process gas and a plenum for introducing the process gas over a broad area of the leg opposing the outlet to reduce localized high plasma impedance and gas flow instability, wherein the leg opposing the outlet defines a plurality of holes for providing a helical gas rotation in the plasma channel.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: March 1, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Xing Chen, Andrew Cowe
  • Patent number: 9214909
    Abstract: A scalable radio frequency (RF) generator system including at least one power supply, at least one power amplifier receiving input from the power supply, and a power supply control module, and a system controller. Output from the at least one power supply can be combined and applied to each of the power amplifiers. Output form each of the at least one power amplifiers can be combined to generate a single RF signal. A compensator module controls operation of the at least one power supply. The compensator module, system control module, and power supply controller communicate in a daisy chain configuration.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: December 15, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Aaron T. Radomski, Jonathan Smyka, Daniel J. Lincoln, Yogendra Chawla, David J. Coumou, Vadim Lubomirsky
  • Patent number: 9214901
    Abstract: A radio frequency system includes a first power splitter, a first push-pull power amplifier and a second push-pull power amplifier. The first power splitter is configured to receive a first radio frequency signal and generate a first output signal and a second output signal. The first push-pull power amplifier is configured to amplify the first output signal. The first push-pull power amplifier comprises a first set of transistors including at least two radio frequency power transistors and a first output transformer. The second push-pull power amplifier is configured to amplify the second output signal. The second push-pull power amplifier includes a second set of transistors including at least two radio frequency power transistors and a second output transformer. An output of the first transformer is galvanically and directly connected to an output of the second output transformer.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 15, 2015
    Assignee: MKS Instruments, Inc.
    Inventor: Christopher Michael Owen
  • Patent number: 9206919
    Abstract: An expandable and contractible shield around a bellows in a valve protects the bellows from corrosive gases and solid particles in the valve chamber. In a manifold valve assembly with multiple outlet ports and multiple valves in a common valve chamber, a respective expandable and contractible shield around each respective bellows of each respective valve in the assembly separates each bellows from corrosive gases and solid particles in the common valve chamber regardless of whether one or all of the valves in the assembly is opened or closed.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: December 8, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: David Neumeister, Bradly Lefevre, Kevin Grout, Youfan Gu
  • Patent number: 9200711
    Abstract: A valve has a major valve closure member with a valve stem for opening and closing a major port in a valve chamber. An alternate flow path extends through the major valve closing member. Flow is controlled through the alternate flow path by directing a minor valve actuating fluid through the valve stem to apply pressure on a minor valve piston in the major valve closure member to move a minor valve closure member in the major valve closure member between a closed mode in which the minor valve closure member closes the alternate flow path and an opened mode in which the minor valve closure member opens the alternate flow path. The minor valve actuating fluid is sealed from the alternate flow path by a flexible diaphragm positioned between the minor valve actuating fluid and the minor valve piston, so the pressure of the minor valve actuating fluid is applied to the minor valve piston via the flexible diaphragm.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: December 1, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Youfan Gu, David Neumeister, Kevin Grout
  • Publication number: 20150323512
    Abstract: A method and system for creating a design plan to test a product characteristic are described. One or more factors, level corresponding to the factors, and partitions for testing the product characteristic are determined. For each partition, an active matrix is generated. The product characteristic can be tested at each partition using the levels for the factors specified by the corresponding active matrix.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 12, 2015
    Applicant: MKS Instruments, Inc.
    Inventors: Ludvig Vikström, Conny Vikström, Erik Johansson, Gustaf Hector
  • Publication number: 20150318148
    Abstract: An apparatus for generating plasma includes a plasma discharge tube and a conductive coil helically wound around an outer surface of the plasma discharge tube. A waveguide is coupled to a microwave cavity surrounding the plasma discharge tube to guide the microwave energy into the plasma discharge tube such that the plasma is generated in the plasma discharge tube. The waveguide is positioned such that an electric field of the microwave energy is oriented at a predetermined angle with respect to the longitudinal axis of the plasma discharge tube. A resulting induced electric current in the conductive coil affects power absorption in the plasma discharge tube, the predetermined angle being selectable such that power absorption in the plasma discharge tube is according to a predetermined profile with respect to the longitudinal axis of the plasma discharge tube.
    Type: Application
    Filed: March 12, 2015
    Publication date: November 5, 2015
    Applicant: MKS INSTRUMENTS, INC.
    Inventors: Xing Chen, Chengxiang Ji, Erin Madden, IIya Pokidov, Kevin W. Wenzel
  • Publication number: 20150312963
    Abstract: Heater modules are configured for streamlined daisy chain connectivity that includes front end and intermediate daisy chain power injection, water resistant heater assemblies, and shielding. A power injection device is configured with connectivity for insertion of power into heater modules that are in front and intermediate daisy chain positions while enabling data communications between heater modules positioned on opposite sides of the power injection locations.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 29, 2015
    Applicant: MKS INSTRUMENTS, INC.
    Inventors: Jeffrey D. Kiernan, Karl Hausmann, Paul Dozoretz
  • Publication number: 20150276536
    Abstract: Micro-Pirani gauge vacuum gauges are described that use low-thermal conductivity support elements. A micro-Pirani gauge or vacuum sensor can include a heating element operative to heat a gas and to produce a signal corresponding to the pressure of the gas; a platform configured to receive the heating element, with the platform having a first coefficient of thermal conductivity; and a support element connected to a substrate and configured to support the platform with the heating element within an aperture disposed in the substrate, with the support element having a second coefficient of thermal conductivity, where the second coefficient of thermal conductivity is less than the first coefficient of thermal conductivity. Multimode pressure sensing including a micro-Pirani gauge are also described.
    Type: Application
    Filed: March 25, 2014
    Publication date: October 1, 2015
    Applicant: MKS Instruments, Inc.
    Inventors: Lei Gu, Stephen F. Bart, Ole Wenzel
  • Publication number: 20150279626
    Abstract: An apparatus for generating plasma includes a plasma discharge tube and a conductive coil helically wound around an outer surface of the plasma discharge tube. A waveguide is coupled to a microwave cavity surrounding the plasma discharge tube to guide the microwave energy into the plasma discharge tube such that the plasma is generated in the plasma discharge tube. The waveguide is positioned such that an electric field of the microwave energy is oriented at a predetermined angle with respect to the longitudinal axis of the plasma discharge tube. A resulting induced electric current in the conductive coil affects power absorption in the plasma discharge tube, the predetermined angle being selectable such that power absorption in the plasma discharge tube is according to a predetermined profile with respect to the longitudinal axis of the plasma discharge tube.
    Type: Application
    Filed: March 27, 2014
    Publication date: October 1, 2015
    Applicant: MKS INSTRUMENTS, INC.
    Inventors: Xing Chen, Chengxiang Ji, Erin Madden, Ilya Pokidov, Kevin W. Wenzel
  • Patent number: 9133960
    Abstract: A valve assembly comprises: a valve body including a passageway through which a first gas can be transmitted through the valve assembly; a valve flow control element movable relative to the valve body between an opened position wherein flow through the passageway is at a maximum flow, and a closed position wherein flow through the passageway is at a minimum flow, the valve flow control element is shaped so that a control gap is provided between the valve body and valve flow control element through which the first gas can flow, and the dimensions of the control gap vary depending on the position of the valve flow control element relative to the valve body; and a gas injector arrangement for selectively injecting a second gas into the control gap when the valve assembly is used to control the flow of the first gas through the passageway.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: September 15, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Paul D. Lucas, Gordon Hill, Jaroslaw Wojciech Pisera
  • Patent number: 9136093
    Abstract: A radio frequency (RF) system is disclosed. The RF system includes an RF sensor, an analog to digital converter (ADC) module, a processing module, and a synchronization module. The RF sensor measures a parameter of an RF output and generates an RF signal based on the parameter. The ADC module converts samples of the RF signal into digital values. The processing module generates processed values based on the digital values. The synchronization module outputs one of the processed values in response to a transition in the RF output.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: September 15, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: David J. Coumou, Larry J. Fisk, II, Aaron T. Radomski, Jaehyun Kim, Sang-Won Lee, Jonathan Smyka
  • Patent number: 9127361
    Abstract: A method of and a multiple zone pressure controller system for controlling the pressure of a gas or vapor flowing to at least two zones of a process tool such as a vacuum deposition chamber. The system comprises: at least two channels configured and arranged so as to provide the flow of the gas or vapor to corresponding zones of the process tool, each channel including a pressure controller configured and arranged to control the pressure of gas or vapor in each channel, a leakby orifice or nozzle configured to provide a leak rate of gas or vapor from the channel; and a controller configured and arrange to determine the true flow information to each zone of the process tool so that the true leak rate in the chamber can be determined.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: September 8, 2015
    Assignee: MKS Instruments, Inc.
    Inventor: Junhua Ding
  • Publication number: 20150247586
    Abstract: Pilot valve structures are described as including a main valve having a main flow body and having an inlet and outlet, and a diaphragm, with a perimeter, a moveable portion, and first and second sides. A main flow orifice is located in the flow body between the inlet and outlet. A main valve plug is attached to and/or disposed in the moveable portion of the diaphragm and opens and closes the flow orifice when the moveable portion of the diaphragm is in first and second positions. The pilot valve also includes a pilot valve inlet that is connected to the flow path of the main flow body. A pilot valve outlet/orifice is disposed within and co-located with the main valve plug. The pilot valve includes a pilot valve plug, which is moveable to open and close the pilot valve orifice. Related mass flow controllers with such pilot valve structures are further described.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 3, 2015
    Applicant: MKS Instruments, Inc.
    Inventor: Richard Gomes, II
  • Publication number: 20150232333
    Abstract: A system and method for facilitating a chemical reaction is provided. The system can have an electrically conductive member. The electrically conductive member is capable of holding a chemical mixture. The electrically conductive member is directly coupled to a power source and is heated when the power source is on. When a chemical mixture is within the electrically conductive member and the power source is on, the chemical mixture is heated such that a chemical reaction can occur.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 20, 2015
    Applicant: MKS Instruments, Inc.
    Inventors: Johannes Seiwert, Christiane Gottschalk, Joachim Lohr, Martin Blacha
  • Patent number: 9069345
    Abstract: A method, controller, and system for controlling a manufacturing process (batch-type or continuous-type) with a multivariate model are described. Dependent variable data and manipulated variable data are received. Dependent variable data represents values of uncontrolled process parameters from a plurality of sensors. Manipulated variable data represents controlled or setpoint values of controllable process parameters of a plurality of process tools. A predicted operational value, multivariate statistic, or both are determined based on the received data, and operating parameters of the manufacturing process are determined based on the predicted score, multivariate statistic, or both.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: June 30, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Christopher Peter McCready, Svante Bjarne Wold
  • Patent number: 9056262
    Abstract: The invention provides, in one aspect, a system for recirculating ozonated liquid. The system includes a contactor including at least two inlets and at least two outlets. The contactor is in fluid communication with a first liquid source at a first contactor inlet and a second liquid source at a second contactor inlet, and the second contactor inlet receives gas that purges at least a portion of gas from liquid received at the first contactor inlet. The purged gas exits the contactor at a first contactor outlet. The contactor is in fluid communication with the second liquid source at a second contactor outlet, and the contactor drains at least a portion of the liquid in the contactor, the drained liquid exiting the contactor at the second contactor outlet. The contactor includes a third inlet in fluid communication with the first liquid source, the third inlet allowing the first liquid source to release liquid at an ambient pressure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: June 16, 2015
    Assignee: MKS Instruments, Inc.
    Inventors: Johannes Heinrich Seiwert, Ulrich Alfred Brammer, Martin Blacha, Gerhard Joachim Schnaiter
  • Publication number: 20150160126
    Abstract: Methods and systems are provided for monitoring at least one gas in a sample gas. An exemplary system includes a source used for generating a beam of radiation, at least one retro-reflector configured to receive the beam of radiation from the source in an incident direction and reflect the beam of radiation toward the source in alignment with the incident direction, and a motor configured to move the at least one retro-reflector with respect to the source in a direction collinear with the incident direction. The system also includes a sample cell storing a sample gas comprising at least one gas. The sample cell is configured to allow at least a portion of an extracted beam of radiation from a cavity, defined by the source and the at least one retro-reflector, to propagate therethrough.
    Type: Application
    Filed: May 12, 2014
    Publication date: June 11, 2015
    Applicant: MKS Instruments, Inc.
    Inventor: Robert M. Carangelo