Patents Assigned to N. E. Chemcat Corporation
  • Publication number: 20200290024
    Abstract: Provided is a catalyst mixture which, in a nitro group hydrogenation reaction of an aromatic nitro compound having a structure in which nitro groups and halogen atoms are directly bonded as substituents to a ring skeleton of the same ring while separated from each other, is capable of selectively hydrogenating the nitro groups and sufficiently reducing the removal of the halogen atoms from the ring. This catalyst mixture includes a catalyst which is used in a hydrogenation reaction of at least one among one or more nitro groups present in a reactant, which is an aromatic nitro compound having a structure in which one or more nitro groups and one or more halogen atoms are directly bonded as substituents to a ring skeleton of the same ring while separated from each other. This catalyst mixture further includes a base.
    Type: Application
    Filed: February 15, 2017
    Publication date: September 17, 2020
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Tomoteru Mizusaki, Hiroyasu Suzuka, Yusuke Nakaya, Yoshiyuki Wada, Yukio Takagi
  • Publication number: 20200290967
    Abstract: An aromatic nitro compound has a structure in which a nitro group and a halogen atom, in a separated state, are directly bonded as substituents to the ring structure of the same ring; a reaction composition is provided which, in a hydrogenation reaction of the nitro group of said aromatic nitro compound, allows selectively hydrogenating the nitro group, and sufficiently reducing the separation of the halogen atom from the ring; also provided is a reaction system that uses this reaction composition. This reaction composition includes a solvent, and a catalyst which, with the aforementioned aromatic nitro compound as reactant, is used in a hydrogenation reaction of at least one of the one or more nitro groups of said reactant. The catalyst includes a carrier, and Fe oxide particles and Pt particles supported by the carrier.
    Type: Application
    Filed: February 15, 2017
    Publication date: September 17, 2020
    Applicants: N.E. CHEMCAT CORPORATION, N.E. CHEMCAT CORPORATION
    Inventors: Hiroyasu Suzuka, Tomoteru Mizusaki, Yusuke Nakaya, Yoshiyuki Wada
  • Patent number: 10765998
    Abstract: A three-way catalyst for purifying exhaust including noble metal components, enables sintering of the noble metal to be suppressed even at high temperature, enables carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) to be removed and a method for purifying exhaust gas. A carrier having a honeycomb structure is coated with two or more layers of the catalyst compositions, an upper layer including a heat resistant inorganic oxide supporting Pd and a La-containing oxide, a lower layer including a heat resistant inorganic oxide supporting Rh. The content of La in terms of La2O3 is 9.6 g/L to 23 g/L, the content of Ce in terms of CeO2 is 5 g/L to 20 g/L, and the content of Ba in terms of BaO is 1.2 g/L or less per unit volume of the honeycomb structure.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: September 8, 2020
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Takuya Katoh, Akito Takayama
  • Publication number: 20200230583
    Abstract: It is intended to provide a novel zeolite with a rare earth element-substituted framework which has a higher amount of NOx adsorbed and a method for producing the same, and a NOx adsorption member and a catalyst for automobile exhaust gas, etc. comprising the same. The present invention provides a zeolite with a rare earth element-substituted framework, comprising at least a zeolite and at least one rare earth element selected from the group consisting of Ce, La, Nd and Pr, wherein a content ratio of the rare earth element is 1 to 15% by mass in total based on the total amount, and one or some of Al and/or Si atoms constituting the framework of the zeolite are replaced with the rare earth element.
    Type: Application
    Filed: October 1, 2018
    Publication date: July 23, 2020
    Applicant: N.E. CHEMCAT Corporation
    Inventor: Yasuyuki BANNO
  • Publication number: 20200188897
    Abstract: An organometallic complex catalyst is disclosed for use in a cross-coupling reaction. In formula (1), M is the coordination center and represents a metal atom such as Pd or an ion thereof. R1, R2, and R3 may be the same or different and are a substituent such as a hydrogen atom. R4, R5, R6, and R7 may be the same or different and are a substituent such as a hydrogen atom. X represents a halogen atom. R8 represents a substituent that has a ? bond and 3-20 carbon atoms. With regard to the electron-donating properties of R1-R7 with respect to the coordination center M of the ligand containing R1-R7 that is indicated in formula (2), R1-R7 are arranged in combination such that the TEP value obtained from infrared spectroscopy shifts toward the low frequency side compared to the TEP value of the ligand of formula (2-1).
    Type: Application
    Filed: December 6, 2017
    Publication date: June 18, 2020
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, N.E. CHEMCAT CORPORATION
    Inventors: Junchul Choi, Norihisa Fukaya, Shunya Onozawa, Kazuhiko Sato, Hiroyuki Yasuda, Tomoteru Mizusaki, Yukio Takagi
  • Publication number: 20200094237
    Abstract: The present invention provides a technique capable of adjusting the loading positions of gold and palladium in a VAM catalyst by a method of producing a palladium-gold loaded catalyst for vinyl acetate synthesis. The method includes a step of impregnating a spherical porous molded carrier of an inorganic oxide with a mixed aqueous solution containing a palladium precursor as a catalytically active species and a gold precursor as a co-catalyst component, and subsequently impregnating the resultant spherical porous molded carrier with an aqueous alkaline solution to water-insolubilize the palladium precursor and the gold precursor in the spherical porous molded carrier to obtain a palladium-gold immobilized spherical porous molded carrier; and a subsequent step of adjusting the moisture content of the palladium-gold immobilized spherical porous molded carrier.
    Type: Application
    Filed: June 14, 2018
    Publication date: March 26, 2020
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Takayuki MIYAJI, Hayato MIYAZAKI
  • Publication number: 20200070126
    Abstract: There are provided an exhaust gas-purifying catalyst composition that can purify hydrocarbons, carbon monoxide, nitrogen oxides, and the like discharged from an internal combustion engine or the like, and can maintain excellent purification performance particularly under a wide range of conditions from low temperature to high temperature, and a method for producing the same, and an automobile exhaust gas-purifying catalyst. The present invention provides an exhaust gas-purifying catalyst composition for purifying carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), and the like in exhaust gas, comprising at least Rh; a complex oxide that is a particular Ce-containing component (A) and/or a particular Zr-containing component (B); and alumina, wherein Rh is supported on alumina together with the complex oxide, an amount of Rh supported is 0.01 to 5 wt % based on a total amount of Rh, the complex oxide, and alumina, and a content of the complex oxide is 0.
    Type: Application
    Filed: February 9, 2018
    Publication date: March 5, 2020
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Hiroyuki HARA, Hiroki NAKAYAMA, Makoto NAGATA
  • Publication number: 20200055039
    Abstract: The present invention provides an exhaust gas purifying filter capable of efficiently burning and removing particulates captured by a partition wall, and a production method thereof. This exhaust gas purifying filter (CSF) of the present invention includes at least a honeycomb substrate having a porous partition wall configured to capture particulates (PM) such as soot in exhaust gas, and a catalyst carried by the honeycomb substrate and configured to burn and remove the particulates captured by the partition wall of the honeycomb substrate and deposited within cells, wherein the catalyst is carried concentrically in a shallow portion from the surface of the cell wall on the exhaust gas inflow side of the honeycomb substrate, and 65% or more of the total mass of the catalyst is present in a depth region from the surface of the cell wall of the honeycomb substrate up to 2/10 a with reference to the wall thickness a of the partition wall.
    Type: Application
    Filed: February 2, 2018
    Publication date: February 20, 2020
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Yuto KAYADA, Ryuji ANDO
  • Publication number: 20200055035
    Abstract: The invention provides a selective catalytic reduction (SCR) catalyst effective in the abatement of nitrogen oxides (NOx), the SCR catalyst comprising a metal-promoted molecular sieve promoted with a metal selected from iron, copper, and combinations thereof, wherein the metal is present in an amount of 2.6% by weight or less on an oxide basis based on the total weight of the metal-promoted molecular sieve. A catalyst article, an exhaust gas treatment system method, and a method treating an exhaust gas stream, each comprising the SCR catalyst of the invention, are also provided. The SCR catalyst is particularly useful for treatment of exhaust from a lean burn gasoline engine.
    Type: Application
    Filed: February 21, 2018
    Publication date: February 20, 2020
    Applicants: BASF Corporation, N. E. CHEMCAT CORPORATION
    Inventors: Xiaolai Zheng, Mahmuda Choudhury, Patrick Burk, Makoto Nagata, Yasuharu Kanno, Hiroki Nakayama
  • Publication number: 20200003098
    Abstract: An exhaust gas purification device is capable of reducing the amount of NOx emissions generated at the time of cold start. An exhaust gas purification device includes a urea injection valve, a metal honeycomb, a temperature sensor, and an SCR catalyst in an exhaust passage. It is possible for an exhaust gas temperature of exhaust gas passing through the metal honeycomb to be increased by the metal honeycomb that is capable of being electrically heated by control executed by a control unit ECU. The exhaust gas temperature is detected by the temperature sensor. Based on a temperature-versus-ammonia adsorption amount profile stored in advance in a storage unit of the control unit ECU, ammonia is pre-adsorbed onto the metal honeycomb and the SCR catalyst, and the metal honeycomb is electrically heated at the time of cold start after the temperature detected by the temperature sensor becomes lower than 150° C.
    Type: Application
    Filed: February 8, 2018
    Publication date: January 2, 2020
    Applicants: N.E. CHEMCAT CORPORATION, National Agency for Automobile and Land Transport Technology
    Inventors: Toshinori OKAJIMA, Makoto NAGATA, Nobunori OKUI, Kyohei YAMAGUCHI
  • Publication number: 20190314761
    Abstract: A three-way catalyst for purifying exhaust including noble metal components, enables sintering of the noble metal to be suppressed even at high temperature, enables carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) to be removed and a method for purifying exhaust gas. A carrier having a honeycomb structure is coated with two or more layers of the catalyst compositions, an upper layer including a heat resistant inorganic oxide supporting Pd and a La-containing oxide, a lower layer including a heat resistant inorganic oxide supporting Rh. The content of La in terms of La2O3 is 9.6 g/L to 23 g/L, the content of Ce in terms of CeO2 is 5 g/L to 20 g/L, and the content of Ba in terms of BaO is 1.2 g/L or less per unit volume of the honeycomb structure.
    Type: Application
    Filed: April 11, 2017
    Publication date: October 17, 2019
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Takuya Katoh, Akito Takayama
  • Publication number: 20190308182
    Abstract: An organometallic complex catalyst is disclosed for use in a cross-coupling reaction. In formula (1), M is the coordination center and represents a metal atom such as Pd or an ion thereof. R1, R2, and R3 may be the same or different and are a substituent such as a hydrogen atom. R4, R5, R6, and R7 may be the same or different and are a substituent such as a hydrogen atom. X represents a halogen atom. R8 represents a substituent that has a ? bond and 3-20 carbon atoms. With regard to the electron-donating properties of R1-R7 with respect to the coordination center M of the ligand containing R1-R7 that is indicated in formula (2), R1-R7 are arranged in combination such that the TEP value obtained from infrared spectroscopy shifts toward the high frequency side compared to the TEP value of the ligand of formula (2-1).
    Type: Application
    Filed: December 6, 2017
    Publication date: October 10, 2019
    Applicants: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, N.E. CHEMCAT CORPORATION
    Inventors: Junchul Choi, Norihisa Fukaya, Shunya Onozawa, Kazuhiko Sato, Hiroyuki Yasuda, Tomoteru Mizusaki, Yukio Takagi
  • Publication number: 20190275500
    Abstract: There are provided an exhaust gas-purifying three-way catalyst having a large palladium surface area and excellent in heat resistance and three-way purification performance, easy to produce, and also excellent in productivity, and a method for producing the same, an exhaust gas-purifying catalytic converter, and the like.
    Type: Application
    Filed: October 24, 2017
    Publication date: September 12, 2019
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Yoshinori TAKAHASHI, Akito TAKAYAMA, Hiroyuki HARA
  • Publication number: 20190193067
    Abstract: A honeycomb structure prevents catalyst slurry from leaching out when applying a wash coat for making a catalyst supported, ensuring air permeability of the outer portion and in which there is no occurrence of cracking when used as a gasoline particulate filter. The honeycomb structure having: a honeycomb substrate composed of porous partition walls forming a plurality of cells and a porous outer portion; and a resin composition on the outer portion of the honeycomb substrate, wherein the outer portion and the partition walls of the honeycomb substrate are formed of the same material; a porosity of the honeycomb structure is 50% or more; and the resin composition is impregnated into pores of the whole outer portion; and the impregnation depth is equal to the outer portion thickness or a part of the resin composition is impregnated deeper than the outer portion and reaches the cell partition walls.
    Type: Application
    Filed: May 15, 2017
    Publication date: June 27, 2019
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Takashi Yamada, Shingo Ishikawa, Yoshinori Takahashi, Kazuhiro Sekiyama
  • Patent number: 10333151
    Abstract: Provided is a method for producing a gas diffusion electrode, with which it is possible to more effectively improve electrode performance, in cases in which a core-shell catalyst is used as an electrode catalyst. This method for producing gas diffusion electrode comprises: a first step in which a support layer having electron conductivity, water-repellency and gas diffusion properties is soaked in water; a second step in which the constituent materials of ink for forming a catalyst layer are put into a mixer and mixed by agitation to prepare an ink for forming a catalyst layer; and a third step in which the ink for forming a catalyst layer is used to form a catalyst layer on the surface of the support layer obtained in the first step. The ink for forming the catalyst layer contains a core-shell catalyst, a polyelectrolyte, water and alcohol. The alcohol is only a polyvalent alcohol.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: June 25, 2019
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Yasuhiro Seki, Takuya Tsubaki, Hiroshi Igarashi
  • Publication number: 20190162091
    Abstract: A cold start-compatible urea SCR system using an exhaust gas purification device, the exhaust gas purification device including a diesel fuel injection means, a DOC, a lean NOx trap release material (LNTR), a urea water injection means, an catalyst of selective catalytic reduction (SCR), and a measurement and control means, the DOC and LNTR being supported on a support in an upper-lower or a front-rear divided manner, the DOC being located in an upper layer or a lower layer, or on a front side, the LNTR being located in an upper layer or a lower layer, or on the rear side.
    Type: Application
    Filed: August 1, 2017
    Publication date: May 30, 2019
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Yasuyuki BANNO, Makoto NAGATA
  • Publication number: 20190160455
    Abstract: A slurry composition for a catalyst and a method for producing the same, a catalyst and a method for producing the same using the slurry composition for a catalyst. The method omits many heretofore required treatment steps and reduces catalyst production cost. The method comprising the steps of providing a slurry composition for a catalyst, comprising at least an aluminosilicate, Cu, and water, and having a solid concentration of 0.1% by mass to 90% by mass, wherein a component for a catalyst has composition represented by Al2O3.xSiO2.yT2O.zCuO (wherein T is a quaternary ammonium cation, and x, y and z are numbers that satisfy 10?x?40, 0.1?y<2.0, and 0.1?z<2.0, respectively) in terms of molar ratio based on an oxide; coating at least one side of a support with this slurry composition; and heat-treating at 350° C. or higher.
    Type: Application
    Filed: November 21, 2018
    Publication date: May 30, 2019
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Yukio TAKAGI, Kiyohiko SAITO, Yasuyuki BANNO, Makoto NAGATA
  • Publication number: 20190143311
    Abstract: The present invention relates to catalysts for lean burn and provides a catalyst for lean burn that is capable of purifying NOx sufficiently and that has a high ability to purify CO and HC over a wide temperature range from low to high temperatures. The present invention provides a catalyst for a lean-burn engine to purify exhaust gas, the catalyst including: an integrally structured support; and a catalyst layer containing a precious metal element, provided on the integrally structured support and having at least two layers that include an upper layer and a lower layer; wherein the upper layer of the catalyst layer contains at least a proton-substituted ?-type zeolite and a ceria-based oxide supporting rhodium, and the lower layer of the catalyst layer contains at least a NOx storage component and platinum supported on an inorganic oxide.
    Type: Application
    Filed: June 22, 2017
    Publication date: May 16, 2019
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Ryuji ANDO, Yuto KAYADA
  • Patent number: 10256475
    Abstract: Provided is an electrode catalyst that can exhibit sufficient performance, is suitable for mass production, and is suitable for reducing production costs, even when containing a relatively high concentration of chlorine. The electrode catalyst has a core-shell structure including a support; a core part that is formed on the support; and a shell part that is formed so as to cover at least one portion of the surface of the core part. A concentration of bromine (Br) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 500 ppm or less, and a concentration of chlorine (Cl) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 8,500 ppm or less.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 9, 2019
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Takuya Tsubaki, Hiroshi Igarashi, Yasuhiro Seki
  • Publication number: 20190051910
    Abstract: To provide electrode catalyst which has the catalyst activity and durability equal to or more than the Pt/Pd/C catalyst. The electrode catalyst has a support and catalyst particles supported on the support. The catalyst particle has the core part formed on the support and the shell part formed on the core part. The core part contains a Ti oxide and Pd, and the shell part contains Pt.
    Type: Application
    Filed: January 24, 2017
    Publication date: February 14, 2019
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Tomoteru Mizusaki, Yoko Nakamura, Kiyotaka Nagamori, Hiroshi Igarashi, Yasuhiro Seki