Patents Assigned to N. E. Chemcat Corporation
  • Publication number: 20190039051
    Abstract: To provide electrode catalyst which has the catalyst activity equal to or more than the Pt/Pd/C catalyst. The electrode catalyst 10A has a support 2 and catalyst particles 3a supported on the support. The catalyst particle has the core part 4 formed on the support, the first shell part 5a formed on the core part and the second shell part 6a formed on a part of the surface of the first shell part. The core part contains Pd, the first shell part contains Pt, and the second shell part contains the Ti oxide. A percentage of the Pt R1Pt (atom %) and a percentage of the Ti derived from the Ti oxide R1Ti (atom %) in an analytical region near a surface measured by X-ray photoelectron spectroscopy satisfy the conditions of the equation (1): 1.00?(R1Ti/R1Pt)?2.50.
    Type: Application
    Filed: January 24, 2017
    Publication date: February 7, 2019
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Tomoteru Mizusaki, Yoko Nakamura, Kiyotaka Nagamori, Hiroshi Igarashi, Yasuhiro Seki
  • Patent number: 10177395
    Abstract: To provide electrode catalyst (core-shell catalyst) having an excellent catalyst activity which contributes to lower the cost of the PEFC. The electrode catalyst has catalyst particles supported an a support. The catalyst particle has a core part containing simple Pd and a shell part containing simple Pt. A percentage RC (atom %) of the carbon of the support and a percentage RPd (atom %) of the simple Pd in an analytical region near a surface measured by X-ray photoelectron spectroscopy (XPS) satisfy the conditions of the following equation (1): 2.15?[100×RPd/(RPd+RC)].
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: January 8, 2019
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Hiroshi Igarashi, Yasuhiro Seki
  • Patent number: 10115992
    Abstract: Provided is an electrode catalyst in which the contents of chlorine (Cl) species and bromine (Br) species are reduced to a predetermined level or lower, capable of exhibiting sufficient catalyst performance. The electrode catalyst has a core-shell structure including a support, a core part formed on the support and a shell part formed to cover at least a part of the surface of the core part. A concentration of bromine (Br) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 400 ppm or less, and a concentration of chlorine (Cl) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 900 ppm or less.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: October 30, 2018
    Assignee: N.E. Chemcat Corporation
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Hiroshi Igarashi, Yasuhiro Seki
  • Patent number: 10030559
    Abstract: Provided is: an oxidation catalyst having excellent ability to combust diesel fuel intermittently sprayed from a nozzle disposed in an exhaust pipe, the oxidation catalyst being incorporated into an exhaust gas purification device having a diesel particulate filter (DPF) or a catalyst soot filter (CSF) for collecting particulate matter from a diesel engine; and an exhaust gas purification device that uses the oxidation catalyst. An oxidation catalyst for exhaust gas purification in which a precious metal component is carried on an inorganic matrix, wherein the inorganic matrix is one or more inorganic oxides selected from the group consisting of alumina, titania, zirconia, silica, and silica-alumina, the oxidation catalyst being characterized in the use of a material in which the activation energy of diesel fuel combustion performance is 72 kJ/mol or less.
    Type: Grant
    Filed: February 28, 2014
    Date of Patent: July 24, 2018
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Tomoaki Ito, Makoto Nagata
  • Publication number: 20180114990
    Abstract: Provided is a method for producing a gas diffusion electrode, with which it is possible to more effectively improve electrode performance, in cases in which a core-shell catalyst is used as an electrode catalyst. This method for producing gas diffusion electrode comprises: a first step in which a support layer having electron conductivity, water-repellency and gas diffusion properties is soaked in water; a second step in which the constituent materials of ink for forming a catalyst layer are put into a mixer and mixed by agitation to prepare an ink for forming a catalyst layer; and a third step in which the ink for forming a catalyst layer is used to form a catalyst layer on the surface of the support layer obtained in the first step. The ink for forming the catalyst layer contains a core-shell catalyst, a polyelectrolyte, water and alcohol. The alcohol is only a polyvalent alcohol.
    Type: Application
    Filed: April 19, 2016
    Publication date: April 26, 2018
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Yasuhiro Seki, Takuya Tsubaki, Hiroshi Igarashi
  • Patent number: 9893365
    Abstract: To provide electrode catalyst which has the catalyst activity and durability at a practically durable level and contributes to lowering of the cost in comparison with the conventional Pt/C catalyst. The electrode catalyst has a support and catalyst particles supported on the support. The catalyst particle has the core part, the first shell part formed on the core part, and the second shell part formed on the first shell part. The core part contains W compound including at least W carbide, the first shell part contains simple Pd, and the second shell part contains simple Pt.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: February 13, 2018
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Hiroshi Igarashi, Yasuhiro Seki
  • Publication number: 20180013158
    Abstract: To provide electrode catalyst (core-shell catalyst) having an excellent catalyst activity which contributes to lower the cost of the PEFC. The electrode catalyst has catalyst particles supported an a support. The catalyst particle has a core part containing simple Pd and a shell part containing simple Pt. A percentage RC (atom %) of the carbon of the support and a percentage RPd (atom %) of the simple Pd in an analytical region near a surface measured by X-ray photoelectron spectroscopy (XPS) satisfy the conditions of the following equation (1): 2.15?[100×RPd/(RPd+RC)].
    Type: Application
    Filed: March 30, 2016
    Publication date: January 11, 2018
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Hiroshi Igarashi, Yasuhiro Seki
  • Publication number: 20180001305
    Abstract: Provided is an electrode catalyst in which the contents of chlorine (Cl) species and bromine (Br) species are reduced to a predetermined level or lower, capable of exhibiting sufficient catalyst performance. The electrode catalyst has a core-shell structure including a support, a core part formed on the support and a shell part formed to cover at least a part of the surface of the core part. A concentration of bromine (Br) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 400 ppm or less, and a concentration of chlorine (Cl) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 900 ppm or less.
    Type: Application
    Filed: September 7, 2016
    Publication date: January 4, 2018
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Kiyotaka NAGAMORI, Tomoteru MIZUSAKI, Yoko NAKAMURA, Hiroshi IGARASHI, Yasuhiro SEKI
  • Publication number: 20170331135
    Abstract: Provided is an electrode catalyst in which the contents of chlorine (Cl) species and bromine (Br) species are reduced to a predetermined level or lower, capable of exhibiting sufficient catalyst performance. The electrode catalyst has a core-shell structure including a support, a core part formed on the support and a shell part formed to cover at least a part of the surface of the core part. A concentration of bromine (Br) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 400 ppm or less, and a concentration of chlorine (Cl) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 900 ppm or less.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 16, 2017
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Kiyotaka NAGAMORI, Tomoteru MIZUSAKI, Yoko NAKAMURA, Hiroshi IGARASHI, Yasuhiro SEKI
  • Publication number: 20170331118
    Abstract: Provided is an electrode catalyst that can exhibit sufficient performance, is suitable for mass production, and is suitable for reducing production costs, even when containing a relatively high concentration of chlorine. The electrode catalyst has a core-shell structure including a support; a core part that is formed on the support; and a shell part that is formed so as to cover at least one portion of the surface of the core part. A concentration of bromine (Br) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 500 ppm or less, and a concentration of chlorine (Cl) species of the electrode catalyst as measured by X-ray fluorescence (XRF) spectroscopy is 8,500 ppm or less.
    Type: Application
    Filed: July 12, 2017
    Publication date: November 16, 2017
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Kiyotaka NAGAMORI, Tomoteru MIZUSAKI, Yoko NAKAMURA, Takuya TSUBAKI, Hiroshi IGARASHI, Yasuhiro SEKI
  • Patent number: 9707544
    Abstract: Conventionally, a silver-cerium oxide composite containing a silver particle and cerium oxide covering the surface of the silver particle has been synthesized through a multi-stage process, and is disadvantageous not only in that there is a need to use an organic solvent and a surfactant, causing the time and cost to be increased, but also in that there is a possibility that fulminating silver is formed, leading to a problem about the safety. A method for producing a catalyst having a silver-cerium oxide composite and an alkaline carrier having supported thereon the oxide composite, the silver-cerium oxide composite containing a silver particle and cerium oxide covering the surface of the silver particle, the method having preparing a mixture containing a silver compound, a cerium compound, and an alkaline carrier, and drying the mixture is provided.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: July 18, 2017
    Assignees: OSAKA UNIVERSITY, N.E. CHEMCAT CORPORATION
    Inventors: Kiyotomi Kaneda, Yukio Takagi
  • Patent number: 9539544
    Abstract: An exhaust gas purification catalyst apparatus, which is superior in oxidation performance of, in particular, nitrogen monoxide, among hydrocarbons, carbon monoxide, nitrogen oxides and particulate components such as soot, included in exhaust gas from a lean burn engine, and combustion performance of light oil. The exhaust gas purification apparatus arranged with an oxidation catalyst (DOC) comprising a noble metal component for oxidizing carbon monoxide, hydrocarbons, in particular, nitrogen monoxide among nitrogen oxides, and for combusting light oil, a catalyzed soot filter (CSF) including a noble metal component for collecting a particulate component such as soot and removing by combustion (oxidation). The oxidation catalyst (DOC) has a catalyst layer where platinum (Pt), palladium (Pd) and barium oxide (BaO) are supported on alumina (Al2O3) having a pore size of 12 to 120 nm, and ratio of platinum and palladium is 1:1 to 11:2 in weight equivalent.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: January 10, 2017
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Toshinori Okajima, Makoto Nagata
  • Publication number: 20160367943
    Abstract: An exhaust gas purification catalyst apparatus, which is superior in oxidation performance of, in particular, nitrogen monoxide, among hydrocarbons, carbon monoxide, nitrogen oxides and particulate components such as soot, included in exhaust gas from a lean burn engine, and combustion performance of light oil. The exhaust gas purification apparatus arranged with an oxidation catalyst (DOC) comprising a noble metal component for oxidizing carbon monoxide, hydrocarbons, in particular, nitrogen monoxide among nitrogen oxides, and for combusting light oil, a catalyzed soot filter (CSF) including a noble metal component for collecting a particulate component such as soot and removing by combustion (oxidation). The oxidation catalyst (DOC) has a catalyst layer where platinum (Pt), palladium (Pd) and barium oxide (BaO) are supported on alumina (Al2O3) having a pore size of 12 to 120 nm, and ratio of platinum and palladium is 1:1 to 11:2 in weight equivalent.
    Type: Application
    Filed: August 31, 2016
    Publication date: December 22, 2016
    Applicant: N.E. CHEMCAT CORPORATION
    Inventors: Toshinori Okajima, Makoto Nagata
  • Patent number: 9525180
    Abstract: Provided is an electrode catalyst production method capable of obtaining, through an easy operation, an electrode catalyst whose chlorine (Cl) species content has been reliably and sufficiently reduced, even when using as an electrode catalyst raw material an electrode catalyst precursor containing a high concentration of chlorine. The method is to produce an electrode catalyst having a core-shell structure including a support, a core part formed on the support and a shell part formed to cover at least a part of a surface of the core part.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: December 20, 2016
    Assignee: N. E. CHEMCAT Corporation
    Inventors: Tomoteru Mizusaki, Kiyotaka Nagamori, Yoko Nakamura, Takuya Tsubaki
  • Patent number: 9523302
    Abstract: An exhaust gas purification catalyst apparatus. The apparatus has a noble metal component for oxidizing NOx in an exhaust gas discharged from a diesel engine, a reducing agent spraying means for supplying the reducing agent selected from a urea component or an ammonia component, and a selective reduction catalyst (SCR) not comprising a noble metal for removing by reduction NOx by contacting with the reducing agent, in this order from the upstream side of an exhaust gas passage. Activity of the selective reduction catalyst (SCR) is maintained by setting that the noble metal component of the oxidation catalyst (DOC) comprises platinum and palladium, and ratio of platinum particles existing alone is 20% or less, or average particle diameter of the noble metal is 4 nm or larger, and by suppressing volatilization of platinum from the oxidation catalyst (DOC), even when catalyst bed temperature increases up to 900° C.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: December 20, 2016
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Takeshi Mende, Toshinori Okajima, Yasuyuki Banno, Makoto Nagata
  • Patent number: 9496561
    Abstract: Provided is an electrode catalyst that can exhibit sufficient performance, is suitable for mass production, and is suitable for reducing production costs, even when containing a relatively high concentration of chlorine. The electrode catalyst has a core-shell structure including a support; a core part that is formed on the support; and a shell part that is formed so as to cover at least one portion of the surface of the core part. The electrode catalyst concurrently fulfills conditions expressed by the following formulae (1) and (2): (X1/M)?1.2 . . . (1) (X2/M)?47.0 . . . (2) (in the formula (1) and the formula (2), M represents an amount of substance (number of atoms) of one or more constituent metal elements of the shell part, X1 represents an amount of substance (number of atoms) of bromine (Br), and X2 represents an amount of substance (number of atoms) of chlorine (Cl)).
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: November 15, 2016
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Takuya Tsubaki, Hiroshi Igarashi, Yasuhiro Seki
  • Publication number: 20160322644
    Abstract: To provide electrode catalyst which has the catalyst activity and durability at a practically durable level and contributes to lowering of the cost in comparison with the conventional Pt/C catalyst. The electrode catalyst has a support and catalyst particles supported on the support. The catalyst particle has the core part, the first shell part formed on the core part, and the second shell part formed on the first shell part. The core part contains W compound including at least W carbide, the first shell part contains simple Pd, and the second shell part contains simple Pt.
    Type: Application
    Filed: August 27, 2015
    Publication date: November 3, 2016
    Applicant: N.E. CHEMCAT Corporation
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Hiroshi Igarashi, Yasuhiro Seki
  • Patent number: 9480948
    Abstract: An exhaust gas purification catalyst apparatus, which is superior in oxidation performance of, in particular, nitrogen monoxide, among hydrocarbons, carbon monoxide, nitrogen oxides and particulate components such as soot, included in exhaust gas from a lean burn engine, and combustion performance of light oil. The exhaust gas purification apparatus arranged with an oxidation catalyst (DOC) comprising a noble metal component for oxidizing carbon monoxide, hydrocarbons, in particular, nitrogen monoxide among nitrogen oxides, and for combusting light oil, a catalyzed soot filter (CSF) including a noble metal component for collecting a particulate component such as soot and removing by combustion (oxidation). The oxidation catalyst (DOC) has a catalyst layer where platinum (Pt), palladium (Pd) and barium oxide (BaO) are supported on alumina (Al2O3) having a pore size of 12 to 120 nm, and ratio of platinum and palladium is 1:1 to 11:2 in weight equivalent.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: November 1, 2016
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Toshinori Okajima, Makoto Nagata
  • Publication number: 20160310931
    Abstract: Conventionally, a silver-cerium oxide composite containing a silver particle and cerium oxide covering the surface of the silver particle has been synthesized through a multi-stage process, and is disadvantageous not only in that there is a need to use an organic solvent and a surfactant, causing the time and cost to be increased, but also in that there is a possiblity that fulminating silver is formed, leading to a problem about the safety. A method for producing a catalyst having a silver-cerium oxide composite and an alkaline carrier having supported thereon the oxide composite, the silver-cerium oxide composite containing a silver particle and cerium oxide covering the surface of the silver particle, the method having preparing a mixture containing a silver compound, a cerium compound, and an alkaline carrier, and drying the mixture is provided.
    Type: Application
    Filed: April 22, 2016
    Publication date: October 27, 2016
    Applicants: OSAKA UNIVERSITY, N.E. CHEMCAT CORPORATION
    Inventors: KIYOTOMI KANEDA, YUKIO TAKAGI
  • Patent number: 9461313
    Abstract: Provided is an electrode catalyst that can exhibit sufficient performance, is suitable for mass production, and is suitable for reducing production costs, even when containing a relatively high concentration of chlorine. The electrode catalyst has a core-shell structure including a support; a core part that is formed on the support; and a shell part that is formed so as to cover at least one portion of the surface of the core part. The electrode catalyst concurrently fulfills conditions expressed by the following formulae (1) and (2): (X1/M)?1.2 . . . (1) (X2/M)?47.0 . . . (2) (in the formula (1) and the formula (2), M represents an amount of substance (number of atoms) of one or more constituent metal elements of the shell part, X1 represents an amount of substance (number of atoms) of bromine (Br), and X2 represents an amount of substance (number of atoms) of chlorine (Cl)).
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: October 4, 2016
    Assignee: N.E. CHEMCAT CORPORATION
    Inventors: Kiyotaka Nagamori, Tomoteru Mizusaki, Yoko Nakamura, Takuya Tsubaki, Hiroshi Igarashi, Yasuhiro Seki