Patents Assigned to Nanogen
  • Patent number: 7314717
    Abstract: The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of at least one disease state relative to recognition of the presence and/or the absence of the biopolymer.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: January 1, 2008
    Assignee: Nanogen Inc.
    Inventors: George Jackowski, Brad Thatcher, John Marshall, Jason Yantha, Tammy Vrees
  • Patent number: 7314542
    Abstract: Methods for the transport and hybridization of a nucleic acid on an electrode device by providing a low conductivity buffer with a reducing agent to the device. The low conductivity buffer may also contain a zwitterion. A current and voltage is applied to a location of the device to effect electrophoretic transportation of the nucleic acid towards the location. The nucleic acid is then hybridized to a nucleic probed located at the location. The reducing agent in the low conductivity buffer may also be acting as a chaotropic agent.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: January 1, 2008
    Assignee: Nanogen, Inc.
    Inventors: Daniel D. Smolko, Paul D. Swanson, Dalibor Hodko, David Canter, Robert W. Haigis, Tricia Patterson
  • Patent number: 7314708
    Abstract: A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridization, antibody/antigen reaction, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: January 1, 2008
    Assignee: Nanogen, Inc.
    Inventors: Michael J. Heller, Eugene Tu
  • Patent number: 7314762
    Abstract: The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or the absence of at least one disease state relative to recognition of the presence and/or the absence of the biopolymer, predict disease risk assessment, and develop therapeutic avenues against the disease.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: January 1, 2008
    Assignee: Nanogen, Inc.
    Inventors: George Jackowski, John Marshall
  • Patent number: 7300757
    Abstract: This invention pertains to the design, fabrication, and uses of an electronic system which can actively carry out and control multi-step and multiplex reactions in macroscopic or microscopic formats. In particular, these reactions include molecular biological reactions, such as nucleic acid hybridizations, nucleic acid amplification, sample preparation, antibody/antigen reactions, clinical diagnostics, combinatorial chemistry and selection, drug screening, oligonucleotide and nucleic acid synthesis, peptide synthesis, biopolymer synthesis, and catalytic reactions. A key feature of the present invention is the ability to control the localized concentration of two or more reaction-dependant molecules and their reaction environment in order to greatly enhance the rate and specificity of the molecular biological reaction.
    Type: Grant
    Filed: August 23, 2004
    Date of Patent: November 27, 2007
    Assignee: Nanogen, Inc.
    Inventors: Carl F. Edman, Eugene Tu, Christian Gurtner, Lorelei Westin, Michael J. Heller
  • Patent number: 7294688
    Abstract: The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of at least one disease state relative to recognition of the presence and/or the absence of the biopolymer.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: November 13, 2007
    Assignee: Nanogen Inc.
    Inventors: George Jackowski, Brad Thatcher, John Marshall, Jason Yantha, Tammy Vrees
  • Patent number: 7270850
    Abstract: The present invention provides improved synthetic polymer hydrogel permeation layers for use on active electronic matrix devices for biological assays. The present invention includes methods for forming a permeation layer on an array of microelectrodes including the steps of attaching a linker to the surface of the array by treating the surface with a linker by vapor deposition and providing a polymerization solution that includes at least one monomer having a polymerizable moiety, a modified streptavidin, a surfactant or porogen, and a cross-linking agent. The surface of the array is then contacted with the polymerization solution and the polymerization solution is then polymerized on the surface of the array to form a permeation layer that is attached o the surface of the array through the linker.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: September 18, 2007
    Assignee: Nanogen, Inc.
    Inventors: Jainamma Krotz, Daniel J. Smolko, Howard R. Reese, Thomas J. Onofrey, Daguang Wang, Theodore M. Winger, John R. Havens
  • Patent number: 7267751
    Abstract: The present invention is directed to devices and methods for carrying out and/or monitoring biological reactions in response to electrical stimuli. A programmable multiplexed active biologic array includes an array of electrodes coupled to sample-and-hold circuits. The programmable multiplexed active biologic array includes a digital interface that allows external control of the array using an external processor. The circuit may monitor, digitally control, and deliver electrical stimuli to the electrodes individually or in selected groups.
    Type: Grant
    Filed: August 20, 2002
    Date of Patent: September 11, 2007
    Assignee: Nanogen, Inc.
    Inventors: Richard Gelbart, Don L. Powrie, Paul David Swanson
  • Patent number: 7256053
    Abstract: The present invention provides a hand-held device of the type useful to perform an in vitro immunodiagnostic assay for an analyte of interest. In embodiments of the invention, the device incorporates a carrier for conducting the assay which comprises an array of pads including a sample pad, a narrow detection pad for detecting analyte, and a bridging pad coupled in flow communication therebetween. The device is provided with a housing adapted to deliver sample onto the carrier as a linear band having a width greater than the detection pad. In combination, these features yield a device that retains the sensitivity required for diagnostic accuracy, yet is improved in terms of cost and ease of manufacture.
    Type: Grant
    Filed: October 24, 2002
    Date of Patent: August 14, 2007
    Assignee: Nanogen, Inc.
    Inventor: Wei Hu
  • Patent number: 7241419
    Abstract: A circuit for control of an output current in a multiple unit cell array includes an array of unit cells arranged in rows and columns. Each unit cell includes a column select transistor being adapted for control by a column selector and a row select transistor being adapted for control by a row selector. The column select transistor and the row select transistor are connected together in series to each other and between an output node and a first supply. A return electrode is provided to complete the circuit.
    Type: Grant
    Filed: May 4, 2001
    Date of Patent: July 10, 2007
    Assignee: Nanogen, Inc.
    Inventors: Donald E. Ackley, Scott O. Graham
  • Patent number: 7186813
    Abstract: Biomolecules are provided having multiple binding sites for attachment to a substrate surface. The multiple attachment sites may be produced directly on the biomolecule or through use of branched phosphoramidite moieties that can be added in multiple to form dendritic structures which can in turn provide attachment sites for substrate binding moieties. Substrate binding moieties may include noncovalent binding moieties. For covalent binding moieties oligonucleotides containing hydrazides are provided. These hydrazides can be introduced via protected building blocks such as phosphoramidites or via building blocks containing precursor forms of such hydrazides.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: March 6, 2007
    Assignee: Nanogen Recognomics GmbH
    Inventors: Markus Schweitzer, Norbert Windhab, John R. Havens, Thomas J. Onofrey, Charles Greef, Daguang Wang
  • Patent number: 7179610
    Abstract: The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of at least one disease state relative to recognition of the presence and/or the absence of the biopolymer, predict disease risk assessment, and develop therapeutic avenues against the disease.
    Type: Grant
    Filed: November 23, 2001
    Date of Patent: February 20, 2007
    Assignee: Nanogen Inc.
    Inventors: George Jackowski, John Marshall
  • Patent number: 7179605
    Abstract: The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of at least one disease state relative to recognition of the presence and/or the absence of the biopolymer, predict disease risk assessment, and develop therapeutic avenues against the disease.
    Type: Grant
    Filed: November 23, 2001
    Date of Patent: February 20, 2007
    Assignee: Nanogen Inc.
    Inventors: George Jackowski, John Marshall
  • Patent number: 7172896
    Abstract: We have performed separation of bacterial and cancer cells from peripheral human blood in microfabricated electronic chips by dielectrophoresis. The isolated cells were examined by staining the nuclei with fluorescent dye followed by laser induced fluorescence imaging. We have also released DNA and RNA from the isolated cells electronically and detected specific marker sequences by DNA amplification followed by electronic hybridization to immobilized capture probes. Efforts towards the construction of a “laboratory-on-a-chip” system are presented which involves the selection of DNA probes, dyes, reagents and prototyping of the fully integrated portable instrument.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: February 6, 2007
    Assignee: Nanogen, Inc.
    Inventors: Jing Cheng, Lei Wu, Michael J. Heller, Ed Sheldon, Jonathan Diver, James P. O'Connell, Dan Smolko, Shila Jalali, David Willoughby
  • Patent number: 7172864
    Abstract: A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridizations, antibody/antigen reactions, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: February 6, 2007
    Assignee: Nanogen
    Inventors: Michael J. Heller, Eugene Tu, Glen A. Evans, Ronald G. Sosnowski
  • Patent number: 7153955
    Abstract: The invention relates to a pentopyranosylnucleoside of the formula (I) or of the formula (II) their preparation and use for the production of a therapeutic, diagnostic and/or electronic component.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: December 26, 2006
    Assignee: Nanogen Recognomics GmbH
    Inventors: Christian Miculka, Norbert Windhab, Tilmann Brandstetter, Gerhard Burdinski
  • Patent number: 7150997
    Abstract: A method of addressing and driving an electrode array includes the step of addressing one or more electrodes within the array using a plurality of row and column lines. In one aspect of the method, a value corresponding to a voltage is stored in a local memory associated with each electrode. The addressed electrodes are then driven at the voltages corresponding to the stored values. In another aspect of the method, a driving element associated with each addressed electrode is selectively coupled with a voltage line so as to charge the electrode with the voltage on the voltage line. The device and methods may be used in the synthesis of biopolymers such as oligonucleotides and peptides.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: December 19, 2006
    Assignee: Nanogen, Inc.
    Inventor: Gregory T. A. Kovacs
  • Patent number: 7135297
    Abstract: The instant invention involves the use of a combination of preparatory steps in conjunction with mass spectroscopy and time-of-flight detection procedures to maximize the diversity of biopolymers which are verifiable within a particular sample. The cohort of biopolymers verified within such a sample is then viewed with reference to their ability to evidence at least one particular disease state; thereby enabling a diagnostician to gain the ability to characterize either the presence or absence of at least one disease state relative to recognition of the presence and/or the absence of the biopolymer, predict disease risk assessment, and develop therapeutic avenues against disease.
    Type: Grant
    Filed: November 23, 2001
    Date of Patent: November 14, 2006
    Assignee: Nanogen Inc.
    Inventors: George Jackowski, John Marshall
  • Patent number: 7135283
    Abstract: Novel polymorphisms of prokaryotic topoisomerase type II Gyr A, Gyr B and parC gene loci are provided. These polymorphisms differentiate very closely related organisms and provide a means to identify pathogenicity and drug resistance. For example, drug resistance such as resistance to methicillin, a drug which is not metabolically tied to topoisomerase function, may be determined by polymorphisms in the Gyrase A locus. Identification of such drug resistance by such unrelated loci is indicative of heretofore unrecognized [sub]species of Staphylococcus aureus.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: November 14, 2006
    Assignee: Nanogen, Inc.
    Inventors: Michael Nerenberg, Ray Radtkey, Prashant Mehta, Dana Vollmer
  • Patent number: RE39816
    Abstract: A diagnostic tool is disclosed for accurately and rapidly diagnosing the condition of an ailing organ. Although applicable to numerous organ and organ systems, this application particularly illustrates the concept of conjunctive marker utilization as it relates to diagnosing and distinguishing congestive heart failure. The invention particularly relates to the conjunctive utilization of cardiac Troponin I (cTn-I) and natriuretic peptide, e.g. ANP, pro-ANP, BNP, pro-BNP and CNP as a retrospective tool for diagnosing the underlying mechanism of heart failure and as a prospective analytical device for monitoring disease progression and efficacy of therapeutic agents.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: September 4, 2007
    Assignee: Nanogen Inc.
    Inventors: Eric B. Stanton, George Jackowski